Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/9/10.1063/1.4961549
1.
A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys. 69, 931 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.931
2.
G. F. Teletzke, H. T. E. D. Davis, and L. E. Scriven, “How liquids spread on solids,” Chem. Eng. Commun. 55, 4182 (1987).
http://dx.doi.org/10.1080/00986448708911919
3.
S. Cohen-Addad, R. Höhler, and O. Pitois, “Flow in foams and flowing foams,” Annu. Rev. Fluid Mech. 45, 241 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140634
4.
Y. Yoon, F. Baldessari, H. D. Ceniceros, and L. G. Leal, “Coalescence of two equal-sized deformable drops in an axisymmetric flow,” Phys. Fluids 19, 102102 (2007).
http://dx.doi.org/10.1063/1.2772900
5.
Z. Tadmor and C. G. Gogos, Principles of Polymer Processing (John Wiley & Sons, 2013).
6.
S. F. Kistler and L. E. Scriven, “Coating flows,” in Computational Analysis of Polymer Processing (Springer, 1983), pp. 243299.
7.
S. F. Kistler and L. E. Scriven, “Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system,” Int. J. Numer. Methods Fluids 4, 207229 (1984).
http://dx.doi.org/10.1002/fld.1650040302
8.
R. J. Braun, “Dynamics of the tear film,” Annu. Rev. Fluid Mech. 44, 267297 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101042
9.
S. J. Weinstein and K. J. Ruschak, “Coating flows,” Annu. Rev. Fluid Mech. 36, 2953 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122049
10.
M. Pasquali and L. E. Scriven, “Free surface flows of polymer solutions with models based on the conformation tensor,” J. Non-Newtonian Fluid Mech. 108, 363409 (2002).
http://dx.doi.org/10.1016/S0377-0257(02)00138-6
11.
M. Pasquali and L. E. Scriven, “Theoretical modeling of microstructured liquids: A simple thermodynamic approach,” J. Non-Newtonian Fluid Mech. 120, 101135 (2004).
http://dx.doi.org/10.1016/j.jnnfm.2004.02.008
12.
G. H. McKinley, “Visco-elasto-capillary thinning and break-up of complex fluids,” in Rheology Reviews, edited by D. M. Binding and K. Walters (British Society of Rheology, Aberystwyth, UK, 2005), pp. 148.
13.
G. I. Taylor, “The dynamics of thin sheets of fluid. III. disintegration of fluid sheets,” Proc. R. Soc. London A 253, 313321 (1959).
http://dx.doi.org/10.1098/rspa.1959.0196
14.
M. Prévost and D. Gallez, “Nonlinear rupture of thin free liquid films,” J. Chem. Phys. 84, 40434048 (1986).
http://dx.doi.org/10.1063/1.450065
15.
M. P. Ida and M. J. Miksis, “Thin film rupture,” Appl. Math. Lett. 9, 3540 (1996).
http://dx.doi.org/10.1016/0893-9659(96)00028-6
16.
J. Eggers, “Nonlinear dynamics and breakup of free-surface flows,” Rev. Mod. Phys. 69, 865 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.865
17.
J. Eggers and E. Villermaux, “Physics of liquid jets,” Rep. Prog. Phys. 71, 036601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/3/036601
18.
D. Vaynblat, J. R. Lister, and T. P. Witelski, “Rupture of thin viscous films by van der waals forces: Evolution and self-similarity,” Phys. Fluids 13, 11301140 (2001).
http://dx.doi.org/10.1063/1.1359749
19.
D. Vaynblat, J. R. Lister, and T. P. Witelski, “Symmetry and self-similarity in rupture and pinchoff: A geometric bifurcation,” Eur. J. Appl. Math. 12, 209232 (2001).
http://dx.doi.org/10.1017/S0956792501004375
20.
S. S. Thete, C. Anthony, O. A. Basaran, and P. Doshi, “Self-similar rupture of thin free films of power-law fluids,” Phys. Rev. E 92, 023014 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.023014
21.
J. Eggers, “Universal pinching of 3D axisymmetric free-surface flow,” Phys. Rev. Lett. 71, 3458 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3458
22.
D. T. Papageorgiou, “On the breakup of viscous liquid threads,” Phys. Fluids 7, 15291544 (1995).
http://dx.doi.org/10.1063/1.868540
23.
Y.-J. Chen and P. H. Steen, “Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge,” J. Fluid Mech. 341, 245267 (1997).
http://dx.doi.org/10.1017/S002211209700548X
24.
R. F. Day, E. J. Hinch, and J. R. Lister, “Self-similar capillary pinchoff of an inviscid fluid,” Phys. Rev. Lett. 80, 704 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.704
25.
O. A. Basaran, “Small-scale free surface flows with breakup: Drop formation and emerging applications,” AIChE J. 48, 18421848 (2002).
http://dx.doi.org/10.1002/aic.690480902
26.
J. Eggers, “Drop formation-an overview,” Z. Angew. Math. Mech. 85, 400410 (2005).
http://dx.doi.org/10.1002/zamm.200410193
27.
J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K. Sambath, I. M. Hutchings, J. Hinch, J. R. Lister, and O. A. Basaran, “Plethora of transitions during breakup of liquid filaments,” Proc. Natl. Acad. Sci. U. S. A. 112, 45824587 (2015).
http://dx.doi.org/10.1073/pnas.1418541112
28.
J. R. Lister and H. A. Stone, “Capillary breakup of a viscous thread surrounded by another viscous fluid,” Phys. Fluids 10, 27582764 (1998).
http://dx.doi.org/10.1063/1.869799
29.
A. U. Chen, P. K. Notz, and O. A. Basaran, “Computational and experimental analysis of pinch-off and scaling,” Phys. Rev. Lett. 88, 174501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.174501
30.
L. Yuan and J. E. Sprittles, “Capillary breakup of a liquid bridge: Identifying regimes and transitions,” J. Fluid Mech. 797, 2959 (2016).
http://dx.doi.org/10.1017/jfm.2016.276
31.
G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge University Press, 1996), Vol. 14.
32.
P. Doshi and O. A. Basaran, “Self-similar pinch-off of power law fluids,” Phys. Fluids 16, 585593 (2004).
http://dx.doi.org/10.1063/1.1639015
33.
B. Ambravaneswaran, E. D. Wilkes, and O. A. Basaran, “Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops,” Phys. Fluids 14, 26062621 (2002).
http://dx.doi.org/10.1063/1.1485077
34.
P. Doshi, R. Suryo, O. E. Yildirim, G. H. McKinley, and O. A. Basaran, “Scaling in pinch-off of generalized Newtonian fluids,” J. Non-Newtonian Fluid Mech. 113, 127 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00081-8
35.
R. Suryo and O. A. Basaran, “Local dynamics during pinch-off of liquid threads of power law fluids: Scaling analysis and self-similarity,” J. Non-Newtonian Fluid Mech. 138, 134160 (2006).
http://dx.doi.org/10.1016/j.jnnfm.2006.04.008
36.
B. Ambravaneswaran and O. A. Basaran, “Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges,” Phys. Fluids 11, 9971015 (1999).
http://dx.doi.org/10.1063/1.869972
37.
M.-L. E. Timmermans and J. R. Lister, “The effect of surfactant on the stability of a liquid thread,” J. Fluid Mech. 459, 289306 (2002).
http://dx.doi.org/10.1017/S0022112002008224
38.
R. V. Craster, O. K. Matar, and D. T. Papageorgiou, “Pinchoff and satellite formation in surfactant covered viscous threads,” Phys. Fluids 14, 13641376 (2002).
http://dx.doi.org/10.1063/1.1449893
39.
P. T. McGough and O. A. Basaran, “Repeated formation of fluid threads in breakup of a surfactant-covered jet,” Phys. Rev. Lett. 96, 054502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054502
40.
Y.-C. Liao, E. I. Franses, and O. A. Basaran, “Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer,” Phys. Fluids 18, 022101 (2006).
http://dx.doi.org/10.1063/1.2166657
41.
Q. Xu, Y.-C. Liao, and O. A. Basaran, “Can surfactant be present at pinch-off of a liquid filament?,” Phys. Rev. Lett. 98, 054503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.054503
42.
M. Roché, M. Aytouna, D. Bonn, and H. Kellay, “Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants,” Phys. Rev. Lett. 103, 264501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.264501
43.
A. L. Yarin, Free Liquid Jets and Films: Hydrodynamics and Rheology (Longman Publishing Group, 1993).
44.
M. Renardy, “A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets,” J. Non-Newtonian Fluid Mech. 59, 267282 (1995).
http://dx.doi.org/10.1016/0377-0257(95)01375-6
45.
V. M. Entov and E. J. Hinch, “Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid,” J. Non-Newtonian Fluid Mech. 72, 3153 (1997).
http://dx.doi.org/10.1016/S0377-0257(97)00022-0
46.
Y. Amarouchene, D. Bonn, J. Meunier, and H. Kellay, “Inhibition of the finite-time singularity during droplet fission of a polymeric fluid,” Phys. Rev. Lett. 86, 3558 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3558
47.
J. Li and M. A. Fontelos, “Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study,” Phys. Fluids 15, 922937 (2003).
http://dx.doi.org/10.1063/1.1556291
48.
C. Clasen, J. Eggers, M. A. Fontelos, J. Li, and G. H. McKinley, “The beads-on-string structure of viscoelastic threads,” J. Fluid Mech. 556, 283308 (2006).
http://dx.doi.org/10.1017/S0022112006009633
49.
P. P. Bhat, O. A. Basaran, and M. Pasquali, “Dynamics of viscoelastic liquid filaments: Low capillary number flows,” J. Non-Newtonian Fluid Mech. 150, 211225 (2008).
http://dx.doi.org/10.1016/j.jnnfm.2007.10.021
50.
P. P. Bhat, S. Appathurai, M. T. Harris, M. Pasquali, G. H. McKinley, and O. A. Basaran, “Formation of beads-on-a-string structures during break-up of viscoelastic filaments,” Nat. Phys. 6, 625631 (2010).
http://dx.doi.org/10.1038/nphys1682
51.
J. Eggers, “Instability of a polymeric thread,” Phys. Fluids 26, 033106 (2014).
http://dx.doi.org/10.1063/1.4869721
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/9/10.1063/1.4961549
Loading
/content/aip/journal/pof2/28/9/10.1063/1.4961549
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/9/10.1063/1.4961549
2016-09-06
2016-09-26

Abstract

Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid’s viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/9/1.4961549.html;jsessionid=bl8sMxzN-dXS3grO0VpZNYwq.x-aip-live-06?itemId=/content/aip/journal/pof2/28/9/10.1063/1.4961549&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/9/10.1063/1.4961549&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/9/10.1063/1.4961549'
Right1,Right2,Right3,