Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/9/10.1063/1.4961612
1.
C. L. Liu, “Ocean sediment holding strength against breakout of embedded objects,” Technical Report R635, DTIC Document, 1969.
2.
M. A. Foda, “On the extrication of large objects from the ocean bottom (the breakout phenomenon),” J. Fluid Mech. 117, 211231 (1982).
http://dx.doi.org/10.1017/S0022112082001591
3.
C. C. Mei, R. W. Yeung, and K.-F. Liu, “Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203215 (1985).
http://dx.doi.org/10.1017/S0022112085000659
4.
B. Muga, “Ocean bottom breakout forces,” Technical Report R591, 1968.
5.
R. P. Chapuis and D. E. Gill, “Hydraulic anisotropy of homogeneous soils and rocks: Influence of the densification process,” Bull. Int. Assoc. Eng. Geol. 39, 7586 (1989).
http://dx.doi.org/10.1007/BF02592538
6.
D.-S. Jeng, Porous Models for Wave-Seabed Interactions (Springer Science & Business Media, 2012).
7.
J. Griffiths, “Directional permeability and dimensional orientation in bradford sand,” Prod. Mon. 14, 2632 (1950).
8.
D. T. Snow, “Rock fracture spacings, openings, and porosities,” J. Soil Mech. Found. Div. 94, 7391 (1968).
9.
M. A. Biot, “General theory of three-dimensional consolidation,” J. Appl. Phys. 12, 155164 (1941).
http://dx.doi.org/10.1063/1.1712886
10.
M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” J. Appl. Phys. 33, 14821498 (1962).
http://dx.doi.org/10.1063/1.1728759
11.
D. J. Acheson, Elementary Fluid Dynamics (Oxford University Press, 1990), pp. 243245.
12.
G. S. Beavers and D. D. Joseph, “Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197207 (1967).
http://dx.doi.org/10.1017/S0022112067001375
13.
Y. Chang, L. H. Huang, and F. P. Y. Yang, “Two-dimensional lift-up problem for a rigid porous bed,” Phys. Fluids 27, 053101 (2015).
http://dx.doi.org/10.1063/1.4919434
14.
H. Brinkman, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles,” Appl. Sci. Res. 1, 2734 (1949).
http://dx.doi.org/10.1007/BF02120313
15.
C. Song and L.-H. Huang, “Laminar poroelastic media flow,” J. Eng. Mech. 126, 358366 (2000).
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:4(358)
16.
M. Kohr, G. P. Raja Sekhar, and J. R. Blake, “Green’s function of the Brinkman equation in a 2D anisotropic case,” IMA J. Appl. Math. 73, 374392 (2008).
http://dx.doi.org/10.1093/imamat/hxm023
17.
L. Durlofsky and J. Brady, “Analysis of the brinkman equation as a model for flow in porous media,” Phys. Fluids 30, 33293341 (1987).
http://dx.doi.org/10.1063/1.866465
18.
N. Martys, D. Bentz, and E. Garboczi, “Computer simulation study of the effective viscosity in Brinkmans equation,” Phys. Fluids 6, 14341439 (1994).
http://dx.doi.org/10.1063/1.868258
19.
D. A. Nield and A. Bejan, Convection in Porous Media (Springer Science & Business Media, 2006).
20.
J. A. Ochoa-Tapia and S. Whitaker, “Momentum transfer at the boundary between a porous medium and a homogeneous fluidi. Theoretical development,” Int. J. Heat Mass Transfer 38, 26352646 (1995).
http://dx.doi.org/10.1016/0017-9310(94)00346-W
21.
J. Koplik, H. Levine, and A. Zee, “Viscosity renormalization in the brinkman equation,” Phys. Fluids 26, 28642870 (1983).
http://dx.doi.org/10.1063/1.864050
22.
H. Liu, P. R. Patil, and U. Narusawa, “On Darcy-Brinkman equation: Viscous flow between two parallel plates packed with regular square arrays of cylinders,” Entropy 9, 118131 (2007).
http://dx.doi.org/10.3390/e9030118
23.
T. Karmakar and G. P. Raja Sekhar, “Effect of anisotropic permeability on fluid flow through composite porous channel,” J. Eng. Math. (published online).
http://dx.doi.org/10.1007/s10665-015-9831-9
24.
H.-M. Huang, M.-Y. Lin, and L.-H. Huang, “Lifting of a large object from a rigid porous seabed,” Journal Hydrodyn., Ser. B 22, 106113 (2010).
http://dx.doi.org/10.1016/S1001-6058(09)60178-5
25.
H. Hsu, L. Huang, and P. Hsieh, “A re-investigation of the low Reynolds number uniform flow past a porous spherical shell,” Int. J. Numer. Anal. Methods Geomech. 28, 14271439 (2004).
http://dx.doi.org/10.1002/nag.393
26.
P. Vincent, S. Sherwin, and P. Weinberg, “Viscous flow over outflow slits covered by an anisotropic Brinkman medium: A model of flow above interendothelial cell clefts,” Phys. Fluids 20, 063106 (2008).
http://dx.doi.org/10.1063/1.2938761
27.
C. Wang, “Flow over a surface with parallel grooves,” Phys. Fluids 15, 11141121 (2003).
http://dx.doi.org/10.1063/1.1560925
28.
A. P. Selvadurai, Partial Differential Equations in Mechanics 2 (Springer Science & Business Media, 2013), Vol. 2.
29.
T. E. Loynachan, K. W. Brown, T. H. Cooper, M. H. Milford et al., Sustaining our Soils and Society (American Geological Institute, 1999).
30.
A. Freeze and J. A. Cherry, Groundwater (Prentice Hall, Inc., Englewood Cliffs, NJ, 1979), Vol. 7631, p. 39.
31.
A. A. Hill and B. Straughan, “Poiseuille flow in a fluid overlying a porous medium,” J. Fluid Mech. 603, 137149 (2008).
http://dx.doi.org/10.1017/S0022112008000852
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/9/10.1063/1.4961612
Loading
/content/aip/journal/pof2/28/9/10.1063/1.4961612
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/9/10.1063/1.4961612
2016-09-02
2016-09-29

Abstract

An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu [“Lifting a large object from a porous bed,” J. Fluid. Mech. , 203–215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang [“Two-dimensional lift-up problem for a rigid porous bed,” Phys. Fluids, , 053101 (2015)] is done.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/9/1.4961612.html;jsessionid=T9Vi_PONDOYkLl4XRqUEHBmM.x-aip-live-03?itemId=/content/aip/journal/pof2/28/9/10.1063/1.4961612&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/9/10.1063/1.4961612&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/9/10.1063/1.4961612'
Right1,Right2,Right3,