Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/9/10.1063/1.4961976
1.
S. Deshmukh and D. Vlachos, “Novel micromixers driven by flow instabilities: Application to post-reactors,” AIChE J. 51, 3193 (2005).
http://dx.doi.org/10.1002/aic.10591
2.
J. S. H. Lee and D. Li, “Electro-osmotic flow at a liquid-air interface,” Microfluid. Nanofluid. 2, 361 (2006).
http://dx.doi.org/10.1007/s10404-006-0084-9
3.
Y. Gao, T. N. Wang, and C. Yang, “Transient two-liquid electro-osmotic flow with electric charges at the interface,” Colloids Surf., A 266, 117 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.05.068
4.
Y. Gao, T. N. Wang, C. Yang, and K. T. Ooi, “Two-fluid electro-osmotic flow in microchannals,” J. Colloid Interface Sci. 284, 306 (2005).
http://dx.doi.org/10.1016/j.jcis.2004.10.011
5.
C. J. Campbell and B. A. Grzybowski, “Microfluidic mixers: From microfabricated to self-assembling devices,” Philos. Trans. R. Soc., A 362, 1069 (2004).
http://dx.doi.org/10.1098/rsta.2003.1363
6.
H. Li, T. N. Wang, and N.-T. Nguyen, “Time-dependent model of mixed electro-osmotic/pressure-driven three immissible lluids in rectangular microchannel,” Int. J. Heat Mass Transfer 53, 772 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.011
7.
V. V. M. Ugaz, R. D. R. Elms, R. C. R. Lo, F. F. A. Shaikh, and M. M. A. Burns, “Microfabricated electrophoresis systems for DNA sequencing and genotyping applications: Current technology and future directions,” Philos. Trans. R. Soc., A 362, 1105 (2004).
http://dx.doi.org/10.1098/rsta.2003.1365
8.
T. Squires, R. Messinger, and S. Manalis, “Making it stick: Convection, reaction and diffusion in surface-based biosensors,” Nat. Biotechnol. 26, 417 (2008).
http://dx.doi.org/10.1038/nbt1388
9.
D. L. Zhang, S. Liu, M. Puerto, C. A. Miller, and G. J. Hirasaki, “Wettability alteration and spontaneous imbibition in oil-wet carbonate formations,” J. Pet. Sci. Eng. 52, 213 (2006).
http://dx.doi.org/10.1016/j.petrol.2006.03.009
10.
S. K. Griffiths and R. H. Nilson, “Charged species transport, separation, and dispersion in nanoscale channels: Autogenous electric field-flow fractionation,” Anal. Chem. 78, 8134 (2006).
http://dx.doi.org/10.1021/ac061412e
11.
A. Graciaa, G. Morel, P. Saulner, J. Lachaise, and R. S. Schecher, “ζ - potential in gas bubbles,” J. Colloid Interface Sci. 172, 131 (2005).
http://dx.doi.org/10.1006/jcis.1995.1234
12.
C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the ζ - potential of gas bubbles in aqueous solutions by microelectrophoresis method,” J. Colloid Interface Sci. 243, 128 (2001).
http://dx.doi.org/10.1006/jcis.2001.7842
13.
M. Takahashi, “ζ - potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface,” J. Phys. Chem. B. 109, 21858 (2005).
http://dx.doi.org/10.1021/jp0445270
14.
W. Choi, A. Sharma, S. Qian, G. Lim, and S. W. Joo, “On steady two-fluid electroosmotic flow with full interfacial electrostatics,” J. Colloid Interface Sci. 357, 521 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.01.107
15.
I. Rubinstein and B. Zaltzman, “Electro-osmotically induced convection at a permselective membrane,” Phys. Rev. E 62, 2238 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.2238
16.
I. Rubinstein and B. Zaltzman, “Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes,” Math. Models Methods Appl. Sci. 11, 263 (2001).
http://dx.doi.org/10.1142/S0218202501000866
17.
B. Zaltzman and I. Rubinstein, “Electroosmotic slip and electroconvective instability,” J. Fluid Mech. 579, 173 (2007).
http://dx.doi.org/10.1017/S0022112007004880
18.
E. A. Demekhin, V. S. Shelistov, and S. V. Polyanskikh, “Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability,” Phys. Rev. E 84, 036318 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.036318
19.
V. S. Shelistov, N. V. Nikitin, G. S. Ganchenko, and E. A. Demekhin, “Numerical modeling of electrokinetic instability in semipermeable membranes,” Dokl. Phys. 56, 538 (2011).
http://dx.doi.org/10.1134/S1028335811100107
20.
C. L. Druzgalski, M. B. Andersen, and A. Mani, “Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface,” Phys. Fluids. 25, 110804 (2013).
http://dx.doi.org/10.1063/1.4818995
21.
E. A. Demekhin, N. V. Nikitin, and V. S. Shelistov, “Direct numerical simulation of electrokinetic instability and transition to chaotic motion,” Phys. Fluids 25, 122001 (2013).
http://dx.doi.org/10.1063/1.4843095
22.
C. S. Yih, “Instability due to viscosity stratification,” J. Fluid Mech. 27, 337 (1967).
http://dx.doi.org/10.1017/S0022112067000357
23.
E. J. Hinch, “A note on the mechanism of the instability at the interface between two shearing fluids,” J. Fluid Mech. 144, 463 (1984).
http://dx.doi.org/10.1017/S0022112084001695
24.
A. P. Hooper, “Long-wave instability at the interface between two viscous fluids: Thin layer effects,” Phys. Fluids 28, 1613 (1985).
http://dx.doi.org/10.1063/1.864952
25.
S. G. Yiantsios and B. G. Higgins, “Linear stability of plane Poiseuille flow of two superposed fluids,” Phys. Fluids 31, 3225 (1988).
http://dx.doi.org/10.1063/1.866933
26.
S. W. Joo, “A nonlinear study on the interfacial instabilities in electro-osmotic flow based on the Debye-Huckel approximation,” Microfluid. Nanofluid. 5, 417 (2008).
http://dx.doi.org/10.1007/s10404-008-0262-z
27.
S. W. Joo, “A new hydrodynamic instability in ultra-thin film flows induced by electro-osmosis,” J. Mech. Sci. Technol. 22, 382 (2008).
http://dx.doi.org/10.1007/s12206-007-1025-6
28.
S. Qian, S. W. Joo, Y. Jiang, and M. A. Cheney, “Free-surface problems in electrokinetic micro- and nanofluidics,” Mech. Res. Commun. 36, 82 (2009).
http://dx.doi.org/10.1016/j.mechrescom.2008.06.014
29.
B. Ray, P. D. S. Reddy, D. Bandyopadhyay, S. W. Joo, A. Sharma, S. Qian, and G. Biswas, “Instabilities in free-surface electroosmotic flows,” Theor. Comput. Fluid Dyn. 26, 311 (2012).
http://dx.doi.org/10.1007/s00162-011-0234-x
30.
M. Mayur, S. Amiroudine, and D. Lasseux, “Free-surface instability in electro-osmotic flows of ultrathin liquid films,” Phys. Rev. E 85, 046301 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.046301
31.
G. S. Ganchenko, E. A. Demekhin, M. Mayur, and S. Amiroudine, “Electrokinetic instability of liquid micro- and nanofilms with a mobile charge,” Phys. Fluids 27, 062002 (2015).
http://dx.doi.org/10.1063/1.4921779
32.
M. Mayur, “Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channel,” Doctorate thesis, University of Bordeaux, 2013, p. 126.
33.
J. Jovanovic, E. V. Rebrov, T. A. Nijhuis, M. T. Kreutzer, V. Hessel, and J. C. Schouten, “Liquid-liquid flow in a capillary microreactor: Hydrodynamic flow patterns and extraction performance,” Ind. Eng. Chem. Res. 51, 1015 (2012).
http://dx.doi.org/10.1021/ie200715m
34.
H. Li, T. N. Wong, and N.-T. Nguyen, “Electrohydrodynamic and shear-stress interfacial instability of two streaming viscous liquid inside a microchannel for tangential electric fields,” Micro Nanosyst. 4, 14-24 (2012).
http://dx.doi.org/10.2174/1876402911204010014
35.
N.-T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, Boston, London, 2006).
36.
A. H. Cortés-Estrada, L. A. Ibarra-Bracamontes, A. Aguilar-Corona, G. Viramontes-Gamboa, and G. Carbajal-De la Torre, “Surface tension and interfacial tension measurements in water-surfactant-oil systems using pendant drop technique,” in Experimental and Computational Fluid Mechanics, edited byJ. Klapp and A. Medina (Springer International Publishing, Cham, 2014), pp. 219226.
http://dx.doi.org/10.1007/978-3-319-00116-6_16
37.
L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, 1984), Vol. 8.
38.
A. Navarkar, S. Amiroudine, M. Mayur, and E. A. Demekhin, “Long-wave interface instabilities of a two-liquid DC electroosmotic system for thin films,” Microfluid. Nanofluid. 19, 813 (2015).
http://dx.doi.org/10.1007/s10404-015-1606-0
39.
A. A. Nepomnyashchy, “Stability of wave regimes in a film flowing down an incline plane,” Izv. Akad. Nauk. SSSR Mekh. Zhidk. I Gaza 3, 28-34 (1974).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/9/10.1063/1.4961976
Loading
/content/aip/journal/pof2/28/9/10.1063/1.4961976
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/9/10.1063/1.4961976
2016-09-08
2016-09-30

Abstract

The two-phase microflow of conductive (electrolyte) and non-conductive (dielectric) viscous liquids bounded by two solid walls in an external electric field is scrutinized. The lower solid wall, which is adjoined to the electrolyte, is a charged dielectric surface; the upper wall which bounds the dielectric is insulated. The problem has a steady one-dimensional (1D) solution. The theoretical results for a plug-like velocity profile are successfully compared with available theoretical and experimental data from the literature. The linear stability of the steady-state flow is investigated numerically with spectral Galerkin’s method for solving linearized eigenvalue problem. This method was successfully applied for related problem of electroosmosis of ultrathin film. The numerical analysis provides insights on the coexistence of long and short-wave instabilities. The influence of control parameters such as the ratio of the viscosities of both liquids and the ratio of the channel heights on the stability of one-dimensional flow was investigated for different values of external electric field. The influence of an external pressure gradient on the flow stability is also investigated. The experimental facts established by other authors, according to which the system destabilizes if the electroosmotic flow is oppositely directed to the external pressure gradient, is confirmed in this work. Otherwise stabilization takes place.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/9/1.4961976.html;jsessionid=M7gza3j0cvOInTX6qUgONLLk.x-aip-live-03?itemId=/content/aip/journal/pof2/28/9/10.1063/1.4961976&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/9/10.1063/1.4961976&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/9/10.1063/1.4961976'
Right1,Right2,Right3,