Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Bruus, Theoretical Microfluidics, Oxford Master Series in Condensed Matter Physics (Oxford University Press, Oxford, UK, 2008).
F. F. Reuss, “Sur un nouvel effet de l’électricité galvanique,” Mém. Soc. Imp. Nat. Moscou 2, 327-337 (1809).
N. Phan-Thien and R. I. Tanner, “New constitutive equation derived from network theory,” J. Non-Newtonian Fluid Mech. 2, 353-365 (1977).
N. Phan-Thien, “A non-linear network viscoelastic model,” J. Rheol. 22, 259-283 (1978).
N. Phan-Thien, “Squeezing of a viscoelastic liquid from a wedge: An exact solution,” J. Non-Newtonian Fluid Mech. 16, 329-345 (1984).
H. Giesekus, “A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility,” J. Non-Newtonian Fluid Mech. 11, 69-109 (1982).
R. G. Owens, “A new microstructure-based constitutive model for human blood,” J. Non-Newtonian Fluid Mech. 140(1-3), 5770 (2006).
M. Moyers-Gonzalez, R. G. Owens, and J. Fang, “A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow,” J. Fluid Mech. 617, 327354 (2008).
H. Fam, J. T. Bryant, and M. Kontopoulou, “Rheological properties of synovial fluids,” Biorheology 44(2), 5974 (2007).
D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68, 10841091 (1964).
C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem. 69, 40174024 (1964).
S. Arulanandam and D. Li, “Liquid transport in rectangular microchannels by electroosmotic pumping,” Colloids Surf., A 161, 29102 (2000).
P. Dutta and A. Beskok, “Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: Finite Debye layer effects,” Anal. Chem. 73, 19791986 (2001).
S. Das and S. Chakraborty, “Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid,” Anal. Chim. Acta 559, 1524 (2006).
C. L. A. Berli and M. L. Olivares, “Electrokinetic flow of non-Newtonian fluids in microchannels,” J. Colloid Interface Sci. 320, 582589 (2008).
C. Zhao and C. Yang, “An exact solution for electro-osmosis of non-Newtonian fluids in microchannels,” J. Non-Newtonian Fluid Mech. 166, 1076-1079 (2012).
C. Zhao and C. Yang, “Electro-osmotic mobility of non-Newtonian fluids,” Biomicrofluidics 5, 014110 (2011).
A. M. Afonso, M. A. Alves, and F. T. Pinho, “Analytical solution of mixed electro-osmotic/pressure driven viscoelastic fluids in microchannels,” J. Non-Newtonian Fluid Mech. 159, 50-63 (2009).
A. M. Afonso, M. A. Alves, and F. T. Pinho, “Electro-osmotic flows of viscoelastic fluids in microchannels under asymmetric zeta potential,” J. Eng. Math. 71, 15-30 (2011).
H. M. Park and W. M. Lee, “Helmholtz–Smoluchowski velocity for viscoelastic electroosmotic flows,” J. Colloid Interface Sci. 317, 631636 (2008).
J. J. Sousa, A. M. Afonso, F. T. Pinho, and M. A. Alves, “Effect of the skimming layer on electro-osmotic–Poiseuille flows of viscoelastic fluids,” Microfluid. Nanofluid. 10, 107-122 (2011).
S. Dhinakaran, A. M. Afonso, M. A. Alves, and F. T. Pinho, “Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien–Tanner model,” J. Colloid Interface Sci. 344, 513-520 (2010).
A. M. Afonso, F. T. Pinho, and M. A. Alves, “Electro-osmosis of viscoelastic fluids and prediction of electro-elastic flow instabilities in a cross slot using a finite-volume method,” J. Non-Newtonian Fluid Mech. 179-180, 55-68 (2012).
R. B. Bird, P. J. Dotson, and N. L. Johnson, “Polymer solution rheology based on a finitely extensible bead-spring chain model,” J. Non-Newtonian Fluid Mech. 7, 213-235 (1980).
T. Hayat, S. Afzal, and A. Hendi, “Exact solution of electro-osmotic flow in generalized Burgers fluid,” Appl. Math. Mech. 32, 1119-1126 (2011).
A. M. Afonso, M. A. Alves, and F. T. Pinho, “Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids,” J. Colloid Interface Sci. 395, 277-286 (2013).
M. W. Johnson, Jr. and D. Segalman, “A model for viscoelastic fluid behavior which allows non-affine deformation,” J. Non-Newtonian Fluid Mech. 2, 255-270 (1977).
D. V. Boger and K. Walters, “Experimental dilemmas in non-Newtonian fluid mechanics and their theoretical resolution,” Korea-Aust. Rheol. J. 12(1), 2738 (2000).
M. D. Chilcott and J. M. Rallison, “Creeping flow of dilute polymer solutions past cylinders and spheres,” J. Non-Newtonian Fluid Mech. 29, 381432 (1988).
P. J. Oliveira and F. T. Pinho, “Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids,” J. Fluid Mech. 387, 271280 (1999).
M. A. Alves, F. T. Pinho, and P. J. Oliveira, “Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid,” J. Non-Newtonian Fluid Mech. 101, 55-76 (2001).
I. J. Rao and K. R. Rajagopal, “Some simple flows of a Johnson-Segalman fluid,” Acta Mech. 132, 209-219 (1999).
J. Y. Yoo and H. C. Choi, “On the steady simple shear flows of the one-mode Giesekus fluid,” Rheol. Acta 28, 1324 (1989).
L. L. Ferrás, J. M. Nóbrega, and F. T. Pinho, “Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip,” J. Non-Newtonian Fluid Mech. 171-172, 97-105 (2012).
P. Debye and E. Hückel, “Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen [The theory of electrolytes. I. Lowering of freezing point and related phenomena],” Phys. Z. 24, 185206 (1923).
A. Conlisk, “On the Debye-Hückel approximation in electroosmotic flow in micro- and nano-channels,” AIAA Paper 2003-2869, 2003 .

Data & Media loading...


Article metrics loading...



In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye–Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien–Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd