Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Galt and B. Maxwell, “Velocity profiles for polyethylene melts,” in Modern Plastics (Breskin & Charleton Publishing Corp., 1964), p. 115.
A. V. Ramamurthy, “Wall slip in viscous fluids and influence of materials of construction,” J. Rheol. 30, 337 (1986).
F. Brochard and P. G. de Gennes, “Shear-dependent slippage at a polymer/solid interface,” Langmuir 8, 3033 (1992).
S. G. Hatzikiriakos and J. M. Dealy, “Wall slip of molten high density polyethylene I. Sliding plate rheometer studies,” J. Rheol. 35, 497 (1991).
S. G. Hatzikiriakos and J. M. Dealy, “Wall slip of molten high density polyethylene. II. Capillary rheometer studies,” J. Rheol. 36, 703 (1992).
F. Brochard-Wyart, C. Gay, and P. G. de Gennes, “Slippage of polymer melts on grafted surfaces,” Macromolecules 29, 377 (1996).
D. M. Kalyon and H. Gevgilili, “Wall slip and extrudate distortion of three polymer melts,” J. Rheol. 47, 683 (2003).
L. A. Archer, S. G. Hatzikiriakos, and K. B. Migler, “Wall slip: Measurement and modelling issues,” in Polymer Processing Instabilities (Marcel Dekker, New York, 2005).
A. Allal and B. Vergnes, “Molecular interpretation of the ‘stick-slip’ defect of linear polymers,” J. Non-Newtonian Fluid Mech. 164, 1 (2009).
S. G. Hatzikiriakos, “Appropriate boundary condition in the flow of molten polymers,” Int. Polym. Process. 25, 55 (2010).
S. G. Hatzikiriakos, “Wall slip of molten polymers,” Prog. Polym. Sci. 37, 624 (2012).
S. G. Hatzikiriakos, “Slip mechanisms in complex fluid flows,” Soft Matter 11, 7851 (2015).
K. B. Migler, H. Hervet, and L. Leger, “Slip transition of a polymer melt under shear stress,” Phys. Rev. Lett. 70, 287 (1993).
K. B. Migler, G. Massey, H. Hervet, and L. Leger, “The slip transition at polymer-solid interface,” J. Phys.: Condens. Matter 6, A301 (1994).
L. Leger, H. Hervet, G. Massey, and E. Durliat, “Wall slip in polymer melts,” J. Phys.: Condens. Matter 9, 7719 (1997).
P. E. Boukany, O. Hemminger, S.-Q. Wang, and L. J. Lee, “Molecular imaging of slip in entangled DNA solution,” Phys. Rev. Lett. 105, 027802 (2010).
F. Rodríguez-González, J. Pérez-González, L. de Vargas, and B. M. Marín-Santibáñez, “Rheo-PIV analysis of the slip flow of a metallocene linear low-density polyethylene melt,” Rheol. Acta 49, 145 (2010).
F. Brochard-Wyart, P. G. de Gennes, H. Hervert, and C. Redon, “Wetting and slippage of polymer melts on semi-ideal surfaces,” Langmuir 10, 1566 (1994).
S.-Q. Wang and P. A. Drda, “Superfluid-like stick-slip transition in capillary flow of linear polyethylene melts.1. General features,” Macromolecules 29, 2627 (1996).
S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of polyethylene. 2. Molecular weight dependence and low-temperature anomaly,” Macromolecules 29, 4115 (1996).
V. Mhetar and L. A. Archer, “Slip in entangled polymer melts. 1. General features,” Macromolecules 31, 8607 (1998).
V. Mhetar and L. A. Archer, “Slip in entangled polymer melts. 2. Effect of surface treatment,” Macromolecules 31, 8617 (1998).
K. M. Awati, Y. Park, E. Weisser, and M. E. Mackay, “Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effect,” J. Non-Newtonian Fluid Mech. 89, 117 (2000).
Y. W. Inn, “Melt fracture and wall slip of metallocene-catalyzed bimodal polyethylenes in capillary flow,” J. Rheol. 57, 393 (2013).
M. Ansari, Y. W. Inn, A. M. Sukhadia, P. J. DesLauriers, and S. G. Hatzikiriakos, “Wall slip of HDPEs: Molecular weight and molecular weight distribution effects,” J. Rheol. 57, 927 (2013).
S. G. Hatzikiriakos and J. M. Dealy, “Role of slip and fracture in the oscillating flow of a HDPE in a capillary,” J. Rheol. 36, 845 (1992).
I. B. Kazatchkov, S. G. Hatzikiriakos, and C. W. Stewart, “Extrudate distortion in the capillary/slit extrusion of a molten polypropylene,” Polym. Eng. Sci. 35, 1864 (1995).
E. E. Rosenbaum, S. G. Hatzikiriakos, and C. W. Stewart, “Flow implications in the processing of tetrafluoroethylene/hexafluoropropylene copolymers,” Int. Polym. Process. 10, 204 (1995).
V. Mhetar and L. A. Archer, “Slip in entangled polymer solutions,” Macromolecules 31, 6639 (1998).
H. Münstedt, M. Schmidt, and E. Wassner, “Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry,” J. Rheol. 44, 413 (2000).
L. Robert, Y. Demay, and B. Vargnes, “Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser Doppler velocimetry,” Rheol. Acta 43, 89 (2004).
E. Mitsoulis, I. B. Kazatchkov, and S. G. Hatzikiriakos, “The effect of slip on the flow of a branched PP melt: Visualisation experiments and simulations,” Rheol. Acta 44, 418 (2005).
I. B. Kazatchkov and S. G. Hatzikiriakos, “Relaxation effects of slip in shear flows of molten polymers,” Rheol. Acta 49, 267 (2010).
N. Bergem, “Visualization studies of polymer melt flow anomalies in extrusion,” in Proceedings of the 7th International Congress On Rheology (Swedish Society of Rheology, 1976), p. 50.
P. A. Drda and S.-Q. Wang, “Stick-slip transition at polymer melt/solid interfaces,” Phys. Rev. Lett. 75, 2698 (1995).
A. Allal and B. Vergnes, “Molecular design to eliminate sharkskin defect for linear polymers,” J. Non-Newtonian Fluid Mech. 146, 45 (2007).
L. M. Lupton and J. W. Regester, “Melt Flow of polyethylene at high rates,” Polym. Eng. Sci. 5, 235 (1965).
R. A. Worth, J. Parnaby, and H. A. A. Helmy, “Wall slip and its implications in the design of single screw melt-fed extruders,” Polym. Eng. Sci. 17, 257 (1977).
D. A. Hill, T. Hasegawa, and M. M. Denn, “On the apparent relation between adhesive failure and melt fracture,” J. Rheol. 34, 891 (1990).
H. E. Park, S. T. Lim, F. Smillo, and J. M. Dealy, “Wall slip and spurt flow of polybutadiene,” J. Rheol. 52, 1201 (2008).
M. E. Mackay and D. J. Henson, “The effect of molecular weight and temperature on the slip of polystyrene melts at low stress levels,” J. Rheol. 42, 1505 (1998).
N. Othman, B. Jazrawi, P. Mehrkhodavandi, and S. G. Hatzikiriakos, “Wall slip and melt fracture of poly(lactides),” Rheol. Acta 51, 357 (2012).
M. Ebrahimi, M. Ansari, and S. G. Hatzikiriakos, “Wall slip of polydisperse linear polymers using double reptation,” J. Rheol. 59, 885 (2015).
M. Ansari, S. G. Hatzikiriakos, A. M. Sukhadia, and D. C. Rohlfing, “Rheology of Ziegler–Natta and metallocene high-density polyethylenes: Broad molecular weight distribution effects,” Rheol. Acta 50, 17 (2011).
W. H. Tuminello, “Molecular weight and molecular weight distribution from dynamic measurements of polymer melts,” Polym. Eng. Sci. 26, 1339 (1986).
J. Des Cloizeaux, “Double reptation vs simple reptation in polymer melts,” Europhys. Lett. 5, 437 (1988).
J. Des Cloizeaux, “Relaxation of entangled polymers in melts,” Macromolecules 23, 3992 (1990).
C. Tsenoglou, “Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers,” Macromolecules 24, 1762 (1991).
W. F. Busse, “Two decades of high-polymer physics: A survey and forecast,” Phys. Today 17, 32 (1964).
H. P. Schreiber and S. H. Storey, “Molecular fractionation in capillary flow of polymer fluids,” J. Polym. Sci., Part B: Polym. Lett. 9, 723 (1965).
H. P. Schreiber, S. H. Storey, and E. B. Bagley, “Molecular fractionation in the flow of polymeric fluids,” J. Rheol. 10, 275 (1966).
A. Hariharan, S. K. Kumar, and T. P. Russell, “A lattice model for the surface segregation of polymer chains due to molecular weight effects,” Macromolecules 23, 3584 (1990).
J. Van der Gucht, N. A. M. Besseling, and G. J. Fleer, “Surface segregation in polydisperse polymer melts,” Macromolecules 35, 6732 (2002).
M. D. Shelby and G. B. Caflisch, “Shear field induced diffusion and molecular weight fractionation during polymer processing,” Polym. Eng. Sci. 44(7), 1283 (2004).
R. Khare, M. D. Graham, and J. J. de Pablo, “Cross-stream migration of flexible molecules in a nanochannel,” Phys. Rev. Lett. 96, 224505 (2006).
N. A. Rorrer and J. R. Dorgan, “Molecular-scale simulation of cross-flow migration in polymer melts,” Phys. Rev. E. 90, 052603 (2014).
J. R. Dorgan and N. A. Rorrer, “Flow induced migration in polymer melts—Theory and simulation,” AIP Conf. Proc. 1662, 030005 (2015).
E. Helfand, “Theory of inhomogeneous polymers. Lattice model for solution interfaces,” Macromolecules 9, 307 (1976).
D. N. Theodorou, “Lattice models for bulk polymers at interfaces,” Macromolecules 21, 1391 (1988).
J. Musil and M. Zatloukal, “Experimental investigation of flow induced molecular weight fractionation during extrusion of HDPE polymer melts,” Chem. Eng. Sci. 66, 4814 (2011).
J. Musil and M. Zatloukal, “Experimental investigation of flow induced molecular weight fractionation phenomenon for two linear HDPE polymer melts having same Mn and Mw but different Mz and Mz+1 average molecular weights,” Chem. Eng. Sci. 81, 146 (2012).
J. Musil and M. Zatloukal, “Flow induced molecular weight fractionation during capillary flow of linear polymer melt,” in Recent Advances in Fluid Mechanics, Heat and Mass Transfer and Biology–Proceedings of the 9th WSEAS International Conference on Fluids, Boston, MA (World Scientific and Engineering Academy and Society, 2012), p. 162.
H. P. Schreiber, “Component redistribution in extrusion of polyethylene compounds,” J. Appl. Polym. Sci. 18, 2501 (1974).
B.-L. Lee and J. L. White, “An experimental study of rheological properties of polymer melts in laminar shear flow and of interface deformation and its mechanisms in two-phase stratified flow,” J. Rheol. 18, 467 (1974).
B.-L. Lee and J. L. White, “Notes: Experimental studies of disperse two-phase flow of molten polymers through dies,” J. Rheol. 19, 481 (1975).
Y. W. Inn, “Melt fracture, wall slip, and flow-induced fractionation of bimodal polyethylenes,” AIP Conf. Proc. 1662, 030004 (2015).
Y. W. Inn, A. M. Sukhadia, and P. J. Deslauriers, “Flow-induced fractionation of bimodal metallocene polyethylene in capillary extrusion,” in Annual Technical Conference—ANTEC, Conference Proceedings (Society of Plastics Engineers, 2014), p. 1108.
J. M. H. M. Scheutjens and G. J. J. Fleer, “Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms,” J. Phys. Chem. 83, 1619 (1979).
J. M. H. M. Scheutjens and G. J. J. Fleer, “Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution,” J. Phys. Chem. 84, 178 (1980).
N. A. Rorrer and J. R. Dorgan, “Finding the missing physics: Mapping polydispersity into lattice-based simulations,” Macromolecules 47(9), 3185 (2014).
M. Ansari, “Rheology and processing of high-density polyethylenes (HDPEs): Effects of molecular characteristics,” Ph.D. thesis, The University of British Columbia, Vancouver, BC,2012.
J. E. Jam, M. Nekoomanesh, M. Ahmadi, and H. Arabi, “From molecular weight distribution to linear viscoelastic properties and back again: Application to some commercial high-density polyethylenes,” Iran. Polym. J. 21, 403 (2012).
J. B. Johnson, G. L. Wilkes, A. M. Sukhadia, and D. C. Rohlfing, “Optical properties of blown and cast polyethylene films: Surface versus bulk structural considerations,” J. Appl. Polym. Sci. 77, 2846 (2000).¡2845::AID-APP6¿3.0.CO2-7

Data & Media loading...


Article metrics loading...



The slip behavior of several high-density polyethylenes with broad range of molecular weight (MW) including bimodals is studied as a function of molecular weight (MW) and its distribution. A formulation similar to the double reptation theory is used to predict the slip velocity of the studied polymers as a function of MWD coupled with a model of surface molecular weight fractionation. While surface fractionation has a minor effect on slip of narrow to moderate MWD polymers (particularly unimodal), its role is significant for broad bimodal MWD polymers. The entropy driven migration of short chains toward the die wall has a profound effect and should be considered in order to calculate the effective MWD on the boundary layer and thus the correct magnitude of wall slip.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd