Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Adrian, R. J. , in On the Role of Conditional Averages in Turbulence Theory. In Turbulence in Liquids: Proceedings of the Fourth Biennial Symposium, Rolla, Missouri, 22-24 September 1975 (Science Press, Princeton, NJ, 1977), pp. 323332.
Bernardini, M. and Pirozzoli, S. , “Inner-outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation,” Phys. Fluids 23, 061701 (2011).
Blackman, K. , “Influence of approach flow conditions on urban street canyon flow,” M.E.Sc. dissertation, University of Western Ontario, Canada,2014.
Blackman, K. , Perret, L. , and Savory, E. , “Effect of upstream flow regime on street canyon flow mean turbulence statistics,” Environ. Fluid Mech. 15, 823849 (2015).
Bonnet, J. P. , Cole, D. R. , Delville, J. , Glauser, M. N. , and Ukeiley, L. S. , “Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure,” Exp. Fluids 17, 307314 (1994).
Brunet, Y. , Finnigan, J. J. , and Raupach, M. R. , “A wind tunnel study of air flow in waving wheat: Single-point velocity statistics,” Boundary-Layer Meteorol. 70, 95132 (1994).
Castillo, M. C. , Inagaki, A. , and Kanda, M. , “The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sub-layer over an urban-like surface,” Boundary-Layer Meteorol. 140, 453469 (2011).
Castro, I. , Cheng, H. , and Reynolds, R. , “Turbulence over urban-type roughness: Deductions from wind-tunnel measurements,” Boundary-Layer Meteorol. 118, 109131 (2006).
Cheng, H. and Castro, I. P. , “Near wall flow over urban-like roughness,” Boundary-Layer Meteorol. 104, 229259 (2002).
Coceal, O. , Dobre, A. , and Thomas, T. G. , “Unsteady dynamics and organized structures from DNS over an idealized building canopy,” Int. J. Climatol. 27, 19431953 (2007).
DeGraaff, D. B. and Eaton, J. K. , “Reynolds number scaling of the flat plate turbulent boundary layer,” J. Fluid Mech. 422, 319346 (2000).
Djenidi, L. , Antonia, R. A. , Amielh, M. , and Anselmet, F. , “Use of PIV to highlight possible errors in hot-wire Reynolds stress data over a 2D rough wall,” Exp. Fluids 55, 1830 (2014).
Druault, P. , Lardeau, S. , Bonnet, J. P. , Coiffet, F. , Delville, J. , Lamballais, E. , Largeau, J. F. , and Perret, L. , “Generation of three-dimensional turbulent inlet conditions for large-eddy simulation,” AIAA J. 42, 447456 (2004).
Guala, M. , Metzger, M. , and McKeon, B. J. , “Interactions within the turbulent boundary layer at high Reynolds number,” J. Fluid Mech. 666, 573604 (2011).
Hussain, F. , “Coherent structures—Reality and myth,” Phys. Fluids 26, 28162838 (1983).
Hussain, F. , “Coherent structures and turbulence,” J. Fluid Mech. 173, 303356 (1986).
Hutchins, N. and Marusic, I. , “Large-scale influences in near-wall turbulence,” Philos. Trans. R. Soc., A 365, 647664 (2007).
Inagaki, A. and Kanda, M. , “Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow,” J. Fluid Mech. 615, 101120 (2008).
Inagaki, A. and Kanda, M. , “Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow,” Boundary-Layer Meteorol. 135, 209228 (2010).
Inoue, M. , Mathis, R. , Marusic, I. , and Pullin, D. I. , “Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations,” Phys. Fluids 24, 075102 (2012).
Jimenez, J. , “Turbulent flows over rough walls,” Annu. Rev. Fluid Mech. 36, 173196 (2004).
Lee, J. H. , Hyung, J. S. , and Krogstad, P. A. , “Direct numerical simulation of the turbulence boundary layer over a cube-roughened wall,” J. Fluid Mech. 669, 397431 (2011).
Lee, J. H. , Abu, S. , Lee, S. H. , and Sung, J. H. , “Turbulent boundary layers over rod- and cube-roughened walls,” J. Turbul. 13, N40 (2012).
Macdonald, R. W. , Griffiths, R. F. , and Hall, D. J. , “An improved method for the estimation of surface roughness of obstacle arrays,” Atmos. Environ. 32, 18571864 (1998).
Macdonald, R. W. , “Modelling the mean velocity profile in the urban canopy layer,” Boundary-Layer Meteorol. 97, 2545 (2000).
Macdonald, R. W. , Carter Schofield, S. , and Slawson, P. R. , “Physical modelling of urban roughness using arrays of regular roughness elements,” Water Air Soil Poll: Focus 2, 541554 (2002).
Marusic, I. , Mathis, R. , and Hutchins, N. , “A wall-shear stress predictive model,” inProceedings of 13th European Turbulence Conference, Warsaw, Poland, 12–15 September 2011.
Mathis, R. , Hutchins, N. , and Marusic, I. , “Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers,” J. Fluid Mech. 628, 311337 (2009).
Mathis, R. , Hutchins, N. , and Marusic, I. , “A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows,” J. Fluid Mech. 681, 537566 (2011a).
Mathis, R. , Marusic, I. , Hutchins, N. , and Screenivasan, K. R. , “The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers,” Phys. Fluids 23, 121702 (2011b).
Nadeem, M. , Lee, J. H. , Lee, J. , and Sung, H. J. , “Turbulent boundary layers over sparsely-spaced rod-roughened walls,” Int. J. Heat Fluid Flow 56, 1627 (2015).
Naguib, A. , Wark, C. , and Juckenhöfel, O. , “Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer,” Phys. Fluids 13(9), 26112626 (2001).
Perret, L. , Blackman, K. , and Savory, E. , “Combining wind-tunnel and field measurements of street-canyon flow via stochastic estimation,” Boundary-Layer Meteorol. (published online 2016).
Perret, L. and Rivet, C. , “Dynamics of a turbulent boundary layer over cubical roughness elements: Insight from PIV measurements and POD analysis,” inProceedings of Eighth International Symposium on Turbulence and Shear Flow Phenomena, Poitiers, France, 27–30 August 2013.
Perret, L. and Savory, E. , “Large-scale structures over a single street canyon immersed in an urban-type boundary layer,” Boundary-Layer Meteorol. 148, 111131 (2013).
Picard, C. and Delville, J. , “Pressure velocity coupling in a subsonic round jet,” Int. J. Heat Fluid Flow 21, 359364 (2000).
Rivet, C. , “Étude en soufflerie atmosphérique des interactions entre canopée urbaine et basse atmosphère par PIV stéréoscopique,” Ph.D. dissertation (École Centrale de Nantes, France, 2014).
Rotach, M. W. , Vogt, R. , Bernhofer, C. , Batchvarova, E. , Christen, A. , Clappier, A. , Feddersen, B. , Gryning, S. E. , Martucci, G. , Mayer, H. , Mitev, V. , Oke, T. R. , Parlow, E. , Richner, H. , Roth, M. , Roulet, Y. A. , Ruffieux, D. , Salmond, J. A. , Schatzmann, M. , and Voogt, J. A. , “BUBBLE—An urban boundary layer meteorology project,” Theor. Appl. Climatol. 81, 231261 (2005).
Savory, E. , Perret, L. , and Rivet, C. , “Modelling considerations for examining the mean and unsteady flow in a simple urban-type street canyon,” Meteorol. Atmos. Phys. 121, 116 (2013).
Schlatter, P. and Örlü, R. , “Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution,” Phys. Fluids 22, 051704 (2010).
Tagawa, M. , Tsuji, T. , and Nagano, Y. , “Evaluation of X-probe response to wire separation for wall turbulence measurements,” Exp. Fluids 12, 413421 (1992).
Takimoto, H. , Inagaki, A. , Kanda, M. , Sato, A. , and Michioka, T. , “Length-scale similarity of turbulent organized structures over surfaces with different roughness types,” Boundary-Layer Meteorol. 147, 217236 (2013).
Takimoto, H. , Sato, A. , Barlow, J. F. , Moriwaki, R. , Inagaki, A. , Onomura, S. , and Kanda, M. , “Particle image velocimetry measurements of turbulent flow within outdoor and indoor urban scale models and flushing motions in urban canopy layers,” Boundary-Layer Meteorol. 140, 295314 (2011).
Talluru, K. M. , Baidya, R. , Hutchins, N. , and Marusic, I. , “Amplitude modulation of all three velocity components in turbulent boundary layers,” J. Fluid Mech. 746, 111 (2014).
Tinney, C. E. , Coiffet, F. , Delville, J. , Hall, A. M. , Jordan, P. , and Glauser, M. N. , “On spectral linear stochastic estimation,” Exp. Fluids 41, 763775 (2006).
Tropea, C. , Yarin, A. , and Foss, J. F. , Springer Handbook of Experimental Fluid Mechanics (Springer-Verlag, Berlin, Heidelberg, 2007), pp. 14031405.
Tutu, N. K. and Chevray, R. , “Cross-wire anemometry in high intensity turbulence,” J. Fluid Mech. 71, 785800 (1975).
Volino, R. J. , Schultz, M. P. , and Flack, K. A. , “Turbulence structure in rough- and smooth-wall boundary layers,” J. Fluid Mech. 592, 263–293 (2007).

Data & Media loading...


Article metrics loading...



In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density, = 25%, is studied within a wind tunnel using combined particle image velocimetry and hot-wire anemometry to investigate the non-linear interactions between large-scale momentum regions and small-scale structures induced by the presence of the roughness. Due to the highly turbulent nature of the roughness sub-layer and measurement equipment limitations, temporally resolved flow measurements are not feasible, making the conventional filtering methods used for triple decomposition unsuitable for the present work. Thus, multi-time delay linear stochastic estimation is used to decompose the flow into large-scales and small-scales. Analysis of the scale-decomposed skewness of the turbulent velocity (′) shows a significant contribution of the non-linear term , which represents the influence of the large-scales () onto the small-scales (). It is shown that this non-linear influence of the large-scale momentum regions occurs with all three components of velocity in a similar manner. Finally, through two-point spatio-temporal correlation analysis, it is shown quantitatively that large-scale momentum regions influence small-scale structures throughout the boundary layer through a non-linear top-down mechanism.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd