Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Camilli, C. M. Reddy, D. R. Yoerger, B. A. S. Van Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva, and J. V. Maloney, “Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon,” Science 330, 201204 (2010).
M. McNutt, R. Camilli, G. Guthrie, P. Hsieh, V. Labson, B. Lehr, D. Maclay, A. Ratzel, and M. Sogge, “Assessment of flow rate estimates for the Deepwater Horizon/Macondo well oil spill,” Technical Report, Flow Rate Technical Group report to the National Incident Command, Interagency Solutions Group, 2011; available at
W. Schmidt, “Turbulent propagation of a stream of heated air,” Z. Angew. Math. Mech. 21, 265351 (1941).
Y. B. Zeldovich, “Limiting laws for turbulent flows in free convection,” Zh. Eksp. Teor. Fiz. 7, 14631465 (1937).
H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, 1972).
A. Shabbir and W. K. George, “Experiments on a round turbulent buoyant plume,” J. Fluid Mech. 275, 132 (1994).
G. I. Taylor, “Dynamics of a mass of hot gas rising in air,” Technical Report MDDC 919, LADC 276, US Atomic Energy Commission, 1945.
B. R. Morton, G. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. London, Ser. A 24, 123 (1956).
B. J. Devenish, G. G. Rooney, and D. J. Thomson, “Large-eddy simulations of a buoyant plume in uniform and stably stratified environments,” J. Fluid Mech. 652, 75103 (2010).
L. J. Bloomfield and R. C. Kerr, “A theoretical model of a turbulent fountain,” J. Fluid Mech. 424, 197216 (2000).
T. J. McDougall, “Bubble plumes in stratified environments,” J. Fluid Mech. 85, 655672 (1978).
T. L. Norman and S. T. Revankar, “Buoyant jet and two-phase jet-plume modeling for application to large water pools,” Nucl. Eng. Des. 241, 16671700 (2011).
I. E. Lima Neto, “Modelling the liquid volume flux in bubbly jets using a simple integral approach,” J. Hydraulic Eng. 138, 210215 (2012).
E. Kaminski, S. Tait, and G. Carazzo, “Turbulent entrainment in jets with arbitrary buoyancy,” J. Fluid Mech. 526, 361376 (2005).
G. Carazzo, E. Kaminski, and S. Tait, “The route to self-similarity in turbulent jets and plumes,” J. Fluid Mech. 547, 137148 (2006).
D. T. Conroy and S. G. L. Smith, “Endothermic and exothermic chemically reacting plumes,” J. Fluid Mech. 612, 291310 (2008).
T. Asaeda and J. Imberger, “Structure of bubble plumes in linearly stratified environments,” J. Fluid Mech. 249, 3557 (1993).
J. D. Ditmars and K. Cederwall, “Analysis of air-bubble plumes,” inCoastal Engineering (American Society of Civil Engineers, 1974), Chap. 128, pp. 2209–2226.
S. S. S. Cardoso and S. T. McHugh, “Turbulent plumes with heterogeneous chemical reaction on the surface of small buoyant droplets,” J. Fluid Mech. 642, 4977 (2009).
A. Fabregat, W. K. Dewar, T. M. Özgökmen, A. C. Poje, and N. Wienders, “Numerical simulations of turbulent thermal, bubble and hybrid plumes,” Ocean Modell. 90, 1628 (2015).
J. H. Milgram, “Mean flow in round bubble plumes,” J. Fluid Mech. 133, 345376 (1983).
S. A. Socolofsky and E. E. Adams, “Liquid volume fluxes in stratified multiphase plumes,” J. Hydraulic Eng. 129, 905914 (2003).
S. A. Socolofsky and E. E. Adams, “Role of slip velocity in the behavior of stratified multiphase plumes,” J. Hydraulic Eng. 131, 273282 (2005).
T. J. McDougall, “Negatively buoyant vertical jets,” Tellus 33, 313320 (1981).
C. R. Liro, E. E. Adams, and H. J. Herzog, “Modelling the release of CO2 in the deep ocean,” Energy Convers. Manage. 33, 667674 (1992).
S. A. Socolofsky, T. Bhaumik, and D. G. Seol, “Double-plume integral models for near-field mixing in multiphase plumes,” J. Hydraulic Eng. 134, 772783 (2008).
A. K. Chesters, M. van Doorn, and L. H. J. Goossens, “A general model for unconfined bubble plumes from extended sources,” Int. J. Multiphase Flow 6, 499521 (1980).
A. M. Leitch and W. D. Baines, “Liquid volume flux in a weak bubble plume,” J. Fluid Mech. 205, 7798 (1989).
P. G. Baines, “Two-dimensional plumes in stratified environments,” J. Fluid Mech. 471, 315337 (2002).
A. Wüest, N. H. Brooks, and D. M. Imboden, “Bubble plume modelling for lake restoration,” Water Resour. Res. 28, 32353250, doi:10.1029/92WR01681 (1992).
C. J. Lemckert and J. Imberger, “Energetic bubble plumes in arbitrary stratification,” J. Hydraulic Eng. 119, 680703 (1993).
S. A. Socolofsky, E. E. Adams, and C. R. Sherwood, “Formation dynamics of subsurface hydrocarbon intrusions following the deepwater horizon blowout,” Geophys. Res. Lett. 38, L09602, doi:10.1029/2011GL047174 (2011).
A. Sokolichin, G. Eigenberger, and A. Lapin, “Simulation of buoyancy driven bubbly flow: Established simplifications and open questions,” AIChE J. 50(1), 2445 (2004).
M. T. Dhotre, B. Niceno, B. L. Smith, and M. Simiano, “Large-eddy simulation (LES) of the large scale bubble plume,” Chem. Eng. Sci. 64, 26922704 (2009).
D. A. Drew, “Mathematical modelling of two-phase flow,” Annu. Rev. Fluid Mech. 15, 261291 (1983).
G. C. Buscaglia, F. A. Bombardelli, and M. H. Garca, “Numerical modeling of large-scale bubble plumes accounting for mass transfer effects,” Int. J. Multiphase Flow 28, 17631785 (2002).
O. Simonin and P. L. Viollet, “Modeling of turbulent two-phase jets loaded with discrete particles,” in Phase-Interface Phenomena in Multiphase Flows (Hemisphere Publishing Corporation, 1990), pp. 259269.
M. Simiano, “Experimental investigation of large-scale three dimensional bubble plume dynamics,” Ph.D. thesis, Swiss Federal Institute of Technology Zurich, 2005.
D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids (Springer-Verlag, 1999), Vol. 135.
G. H. Jirka, “Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: Single round jet,” Environ. Fluid Mech. 4, 156 (2004).
H. Wang and A. W.-K. Law, “Second-order integral model for a round turbulent buoyant jet,” J. Fluid Mech. 459, 397428 (2002).
A. Ezzamel, P. Salizzoni, and G. R. Hunt, “Dynamical variability of axisymmetric buoyant plumes,” J. Fluid Mech. 765, 576611 (2015).
M. G. Domingos and S. S. S. Cardoso, “Turbulent two-phase plumes with bubble-size reduction owing to dissolution or chemical reduction,” J. Fluid Mech. 716, 120136 (2013).
B. R. Morton, “Forced plumes,” J. Fluid Mech. 5, 151163 (1959).
G. R. Hunt and N. G. Kaye, “Virtual origin correction for lazy turbulent plumes,” J. Fluid Mech. 435, 377396 (2001).
E. Applequist and P. Schlatter, “Simulating the Laminar von Kármán flow in nek5000,” Technical Report diva2:722144, KTH Mechanics, 2014.
A. Fabregat Tomàs, A. C. Poje, T. M. Özgökmen, and W. K. Dewar, “Effects of rotation on turbulent buoyant plumes in stratified environments,” J. Geophys. Res., Oceans 121, 53975417, doi:10.1002/2016JC011737 (2016).
M. V. Pham, F. Plourde, and S. Doan-Kim, “Direct and large-eddy simulations of a pure thermal plume,” Phys. Fluids 19, 125103 (2007).
F. Plourde, M. V. Pham, S. Doan-Kim, and S. Balachandar, “Direct numerical simulation of a rapidly expanding thermal plume: Structure and entrainment interaction,” J. Fluid Mech. 604, 99123 (2008).
P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000 web page,, 2008.
M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for Incompressible Fluid Flow (Cambridge University Press, 2002).
T. M. Özgökmen, T. Iliescu, and P. F. Fischer, “Large eddy simulation of stratified mixing in a three-dimensional lock-exchange system,” Ocean Modell. 26, 134155 (2009).
T. M. Özgökmen, T. Iliescu, and P. F. Fischer, “Reynolds number dependence of mixing in a lock-exchange system from direct numerical and large eddy simulations,” Ocean Modell. 30, 190206 (2009).
G.-S. Karamanos and G. E. Karniadakis, “A spectral vanishing viscosity method for large-eddy simulations,” J. Comput. Phys. 163, 2250 (2000).
P. F. Fischer and J. S. Mullen, “Filter-based stabilization of spectral element methods,” C. R. Acad. Sci.-Ser. I-Math. 332, 265270 (2001).
K. Koal, J. Stiller, and H. M. Blackburn, “Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations,” J. Comput. Phys. 231, 33893405 (2012).
T. S. Richards, Q. Aubourg, and B. R. Sutherland, “Radial intrusions from turbulent plumes in uniform stratification,” Phys. Fluids 26, 036602-1036602-17 (2014).
T. V. Crawford and A. S. Leonard, “Observations of buoyant plumes in calm stably stratified air,” J. Appl. Meteorol. 1, 251256 (1962).<0251:OOBPIC>2.0.CO;2
A. B. Tsinober, Y. Yahalom, and D. J. Shlien, “A point source of heat in a stable salinity gradient,” J. Fluid Mech. 135, 199217 (1983).

Data & Media loading...


Article metrics loading...



Deepwater oil blowouts typically generate multiphase hybrid plumes where the total inlet buoyancy flux is set by the combined presence of gas, oil, and heat. We numerically investigate the effects of combined sources of inlet buoyancy on turbulent plume dynamics by varying the inputs of a dispersed, slipping gas phase and a non-slipping buoyant liquid phase in thermally stratified environments. The ability of a single momentum equation, multiphase model to correctly reproduce characteristic plume heights is validated for both dispersed liquid phase and pure gas bubble plumes. A hybrid case, containing buoyancy contributions from both gas and liquid phases, is also investigated. As expected, on the plume centerline, the presence of a slipping gas phase increases both the vertical location of the neutrally buoyant equilibrium height and the maximum vertical extent of the liquid effluent relative to non-bubble plumes. While producing an overall increase in the plume height, the presence of a slipping gas phase also significantly enhances both the extent and magnitude of negatively buoyant downdrafts in the outer plume region. As a result, the intrusion or trapping height, the vertical distance where liquid phase plume effluent accumulates, is found to be significantly lower in both bubble and hybrid plumes. Below the intrusion level, the simulations are compared to an integral model formulation that explicitly accounts for the effects of the gas slip velocity in the evolution of the buoyancy flux. Discrepancies in the integral model and full solutions are largest in the source vicinity region where vertical turbulent volume fluxes, necessarily neglected in the integral formulation, are significant.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd