No data available.

Please log in to see this content.

You have no subscription access to this content.

No metrics data to plot.

The attempt to load metrics for this article has failed.

The attempt to plot a graph for these metrics has failed.

The full text of this article is not currently available.

f

Phenomenology for the decay of energy‐containing eddies in homogeneous MHD turbulence

### Abstract

We evaluate a number of simple, one‐point phenomenological models for the decay of energy‐containing eddies in magnetohydrodynamic(MHD) and hydrodynamicturbulence. The MHDmodels include effects of cross helicity and Alfvénic couplings associated with a constant mean magnetic field, based on physical effects well‐described in the literature. The analytic structure of three separate MHDmodels is discussed. The single hydrodynamic model and several MHDmodels are compared against results from spectral‐method simulations. The hydrodynamic model phenomenology has been previously verified against experiments in wind tunnels, and certain experimentally determined parameters in the model are satisfactorily reproduced by the present simulation. This agreement supports the suitability of our numerical calculations for examining MHDturbulence, where practical difficulties make it more difficult to study physical examples. When the triple‐decorrelation time and effects of spectral anisotropy are properly taken into account, particular MHDmodels give decay rates that remain correct to within a factor of 2 for several energy‐halving times. A simple model of this type is likely to be useful in a number of applications in space physics, astrophysics, and laboratory plasma physics where the approximate effects of turbulence need to be included.

© 1995 American Institute of Physics

Received 28 April 1995
Accepted 25 July 1995

/content/aip/journal/pof2/7/11/10.1063/1.868665

1.

1.P. Bradshaw, T. Cebeci, and J. H. Whitelaw, Engineering Calculation Methods for Turbulent Flow (Academic, San Diego, CA, 1981).

2.

2.J. V. Hollweg and W. Johnson, “Transition region, corona, and solar wind in coronal holes: Some two-fluid models,” J. Geophys. Res. 93, 9547 (1988).

3.

3.A. Yoshizawa, “Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields,” Phys. Fluids B 2, 1589 (1990).

4.

4.Y. Zhou and W. H. Matthaeus, “Transport and turbulence modeling of solar wind fluctuations,” J. Geophys. Res. 95, 10291 (1990).

5.

5.E. Marsch and C. Tu, “Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence,” J. Plasma Phys. 41, 479 (1989).

6.

6.R. H. Kraichnan, “Inertial-range spectrum of hydromagnetic turbulence,” Phys. Fluids 8, 1385 (1965).

7.

7.A. Pouquet, U. Frisch, and J. Leorat, “Strong MHD helical turbulence and the nonlinear dynamo effect,” J. Fluid Mech. 77, 321 (1976).

8.

8.A. Pouquet, M. Meneguzzi, and U. Frisch, “Growth of correlations in magnetohydrodynamic turbulence,” Phys. Rev. A 33, 4266 (1986).

9.

9.A. Pouquet, M. Meneguzzi, and P. L. Sulem, “Influence of velocity-magnetic field correlations of decaying magnetohydrodynamic turbulence with neutral x points,” Phys. Fluids 31, 2635 (1988).

10.

10.R. Grappin, U. Frisch, J. Leorat, and A. Pouquet, “Alfvénic fluctuations as asymptotic states of MHD turbulence,” Astron. Astrophys. 102, 6 (1982).

11.

11.R. Grappin, A. Pouquet, and J. Leorat, “Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation,” Astron. Astrophys. 126, 51 (1983).

12.

12.W. H. Matthaeus and Y. Zhou, “Extended inertial range phenomenology of magnetohydrodynamic turbulence,” Phys. Fluids B 1, 1929 (1989).

13.

13.D. Fyfe and D. Montgomery, “High beta turbulence in two-dimensional magnetohydrodynamics,” J. Plasma Phys. 16, 181 (1976).

14.

14.W. M. Elsässer, “The hydromagnetic equations,” Phys. Rev. 79, 183 (1950).

15.

15.R. H. Kraichnan, “Helical turbulence and absolute equilibrium,” J. Fluid Mech. 59, 745 (1973).

16.

16.T. Stribling and W. H. Matthaeus, “Statistical properties of ideal three-dimensional magnetohydrodynamics,” Phys. Fluids B 2, 1979 (1990).

17.

17.T. Stribling and W. Matthaeus, “Relaxation processes in a low order three dimensional magnetohydrodynamics model,” Phys. Fluids B 3, 1848 (1991).

18.

18.U. Frisch, A. Pouquet, J. Leorat, and A. Mazure, “Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence,” J. Fluid Mech. 68, 769 (1975).

19.

19.D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977).

20.

20.C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Mechanics (Springer-Verlag, New York, 1988).

21.

21.M. Dobrowolny, A. Mangeney, and P. Veltri, “Properties of magnetohydrodynamic turbulence in the solar wind,” Astron. Astrophys. 83, 26 (1980).

22.

22.M. Dobrowolny, A. Mangeney, and P. Veltri, “Fully developed anisotropic hydromagnetic turbulence in interplanetary space,” Phys. Rev. Lett. 45, 144 (1980).

23.

23.W. H. Matthaeus, M. L. Goldstein, and D. A. Roberts, “Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind,” J. Geophys. Res. 95, 20673 (1990).

24.

24.G. I. Taylor, “Statistical theory of turbulence,” Proc. R. Soc. London Ser. A 151, 421 (1935).

25.

25.T. de Karman and L. Howarth, “On the statistical theory of isotropic turbulence,” Proc. R. Soc. London Ser. A 164, 192 (1938).

26.

26.G. K. Batchelor, Theory of Homogeneous Turbulence (Cambridge University Press, New York, 1953).

27.

27.G. K. Batchelor and A. A. Townsend, “Decay of isotropic turbulence in the initial period,” Proc. R. Soc. London Ser. A 193, 327 (1948).

28.

28.R. W. Stewart and A. A. Townsend, “Similarity and self-preservation in isotropic turbulence,” Philos. Trans. R. Soc. London 243, 48 (1951).

29.

29.A. N. Kolmogoroff, “Local structure of turbulence in an incompressible fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 299 (1941a).

30.

30.A. N. Kolmogoroff, “On degeneration of isotropic turbulence in an in compressible viscous liquid,” Dokl. Akad. Nauk SSSR 31, 538 (1941b).

31.

31.A. N. Kolmogoroff, “Dissipation of energy in the locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 31, 19 (1941c). This reference, and others relevant to Kolmogoroff theory are reprinted in Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On, edited by J. C. R. Hunt, O. M. Phillips, and D. Williams (Royal Society of London, London, 1991).

32.

32.G. Comte-Bellot and S. Corrsin, “The use of a contraction to improve isotropy of grid-generated turbulence,” J. Fluid Mech. 25, 657 (1966).

33.

33.P. G. Saffman, “Note on decay of homogeneous turbulence,” Phys. Fluids 10, 1349 (1967).

34.

34.B. Spalding, “Kolmogorov’s two-equation model of turbulence,” Proc. R. Soc. London Ser. A 434, 211 (1991).

35.

35.M. R. Smith, R. J. Donnelly, N. Goldenfeld, and W. F. Vinen, “Decay of vorticity in homogeneous turbulence,” Phys. Rev. Lett. 71, 2583 (1993).

36.

36.W. H. Matthaeus, S. Oughton, D. H. Pontius, Jr., and Y. Zhou, “Evolution of energy-containing turbulent eddies in the solar wind,” J. Geophys. Res. 99, 19 (1994).

37.

37.J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, “Anisotropy in MHD turbulence due to a mean magnetic field,” J. Plasma Phys. 29, 525 (1983).

38.

38.S. Oughton, E. Priest, and W. Matthaeus, “The influence of a mean magnetic field on 3D MHD turbulence,” J. Fluid Mech. 280, 95 (1994).

39.

39.V. Carbone and P. Veltri, “A shell model for anisotropic magnetohydrodynamic turbulence,” Geophys. Astrophys. Fluid Dyn. 52, 153 (1990).

40.

40.M. Hossain, G. Vahala, and D. Montgomery, “Forced magnetohydrodynamic turbulence in a uniform external magnetic field,” Phys. Fluids 28, 3074 (1985).

41.

41.D. Montgomery, “Major disruptions, inverse cascades and the strauss equations,” Phys. Scr. T2/1, 83 (1982).

42.

42.D. Fyfe, D. Montgomery, and G. Joyce, “Dissipative, forced turbulence in two-dimensional magnetohydrodynamics,” J. Plasma Phys. 17, 369 (1977).

43.

43.W. H. Matthaeus and M. L. Goldstein, “Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind,” J. Geophys. Res. 87, 6011 (1982a).

44.

44.A. Roberts, M. Goldstein, L. Klein, and W. H. Matthaeus, “The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observation,” J. Geophys. Res. 92, 11021 (1987a).

45.

45.D. A. Roberts, M. Goldstein, L. Klein, and W. H. Matthaeus, “Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons,” J. Geophys. Res. 92, 12023 (1987b).

46.

46.M. Hossain, W. Matthaeus, and D. Montgomery, “Long time states of inverse cascades in the presence of a maximum length scale,” J. Plasma Phys. 30, 479 (1983).

47.

47.W. H. Matthaeus and S. Lamkin, “Turbulent magnetic reconnection,” Phys. Fluids 29, 2513 (1986).

48.

48.D. Biskamp and H. Welter, “Dynamics of decaying two-dimensional magnetohydrodynamic turbulence,” Phys. Fluids B 1, 1964 (1989).

49.

49.A. Mangeney, R. Grappin, and M. Velli, “MHD turbulence in the solar wind,” in Advances in Solar System Magnetohydrodynamics, edited by E. R. Priest and A. W. Hood (Cambridge University Press, New York, 1991), p. 327.

50.

50.W. H. Matthaeus and D. Montgomery, “Dynamic alignment and selective decay in MHD,” in Statistical Physics and Chaos in Fusion Plasmas, edited by C. W. J. Horton and L. E. Reichl (Wiley, New York, 1977), p. 285.

51.

51.D. Roberts, S. Ghosh, M. Goldstein, and W. H. Matthaeus, “Magnetohydrodynamic simulation of the radial evolution and stream structure of solar wind turbulence,” Phys. Rev. Lett. 67, 3741 (1991).

52.

52.A. C. Ting, W. H. Matthaeus, and D. Montgomery, “Turbulent relaxation processes in magnetohydrodynamics,” Phys. Fluids 29, 3261 (1986).

http://aip.metastore.ingenta.com/content/aip/journal/pof2/7/11/10.1063/1.868665

Article metrics loading...

/content/aip/journal/pof2/7/11/10.1063/1.868665

1995-11-01

2016-10-01

Full text loading...

###
Most read this month

Article

content/aip/journal/pof2

Journal

5

3

true

Commenting has been disabled for this content