No data available.

Please log in to see this content.

You have no subscription access to this content.

No metrics data to plot.

The attempt to load metrics for this article has failed.

The attempt to plot a graph for these metrics has failed.

The full text of this article is not currently available.

f

Phase diagrams for sonoluminescing bubbles

### Abstract

Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence(SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude *P* _{ a }∼1.2–1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper concentration threshold becomes smaller with increased forcing. Our results quantitatively agree with experimental results of Putterman’s UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. All statements are based on the Rayleigh–Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusionPDE and find good agreement.

© 1996 American Institute of Physics

Received Wed May 29 00:00:00 UTC 1996
Accepted Tue Jul 23 00:00:00 UTC 1996

/content/aip/journal/pof2/8/11/10.1063/1.869131

1.

1.D. F. Gaitan, “An experimental investigation of acoustic cavitation in gaseous liquids,” Ph.D. thesis, The University of Mississippi, 1990;

1.D. F. Gaitan, L. A. Crum, R. A. Roy, and C. C. Church, “Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble,” J. Acoust. Soc. Am. 91, 3166 (1992).

2.

2.B. P. Barber and S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature (London) 352, 318 (1991);

2.B. P. Barber and S. J. Putterman, “Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble,” Phys. Rev. Lett. 69, 3839 (1992).

3.

3.B. P. Barber, C. C. Wu, R. Löfstedt, P. H. Roberts, and S. J. Putterman, “Sensitivity of sonoluminescence to experimental parameters,” Phys. Rev. Lett. 72, 1380 (1994).

4.

4.R. Hiller, K. Weninger, S. J. Putterman, and B. P. Barber, “Effect of noble gas doping in single-bubble sonoluminescence,” Science 266, 248 (1994).

5.

5.B. P. Barber, K. Weninger, R. Löfstedt, and S. J. Putterman, “Observation of a new phase of sonoluminescence at low partial pressures,” Phys. Rev. Lett. 74, 5276 (1995).

6.

6.R. Löfstedt, B. P. Barber, and S. J. Putterman, “Toward a hydrodynamic theory of sonoluminescence,” Phys. Fluids A 5, 2911 (1993).

7.

7.R. Löfstedt, K. Weninger, S. J. Putterman, and B. P. Barber, “Sonoluminescing bubbles and mass diffusion,” Phys. Rev. E 51, 4400 (1995).

8.

8.R. G. Holt, D. F. Gaitan, A. A. Atchley, and J. Holzfuss, “Chaotic sonoluminescence,” Phys. Rev. Lett. 72, 1376 (1994).

9.

9.M. J. Moranet al. , “Direct observations of single sonoluminescence pulses,” Nucl. Instrum. Methods in Phys. Res. B 96, 651 (1995).

10.

10.K. Weninger, R. Hiller, B. P. Barber, D. Lacoste, and S. J. Putterman, “Sonoluminescence from single bubbles in non-aqueous liquids: new parameter space for sonochemistry,” J. Phys. Chem. 99, 14195 (1995).

11.

11.R. Hiller and S. J. Putterman, “Observation of isotope effects in sonoluminescence,” Phys. Rev. Lett. 75, 3549 (1995).

12.

12.M. S. Plesset, “On the stability of fluid flows with spherical symmetry,” J. Appl. Phys. 25, 96 (1954).

13.

13.G. Birkhoff, “Note on Taylor instability,” Q. Appl. Math. 12, 306 (1954).

14.

14.A. Eller and L. A. Crum, “Instability of the motion of a pulsating bubble in a sound field,” J. Acoust. Soc. Am. 47, 762 (1970).

15.

15.H. W. Strube, “Numerische Untersuchungen zur Stabilitát nichtsphärisch schwingender Blasen,” Acustica 25, 289 (1971).

16.

16.A. Prosperetti, “Viscous effects on perturbed spherical flows,” Q. Appl. Math. 34, 339 (1977).

17.

17.M. P. Brenner, D. Lohse, and T. F. Dupont, “Bubble shape oscillations and the onset of sonoluminescence,” Phys. Rev. Lett. 75, 954 (1995).

18.

18.J. Schwinger, “Casimir energy for dielectrics spherical geometry,” Proc. Natl. Acad. Sci. U.S.A. 89, 11118 (1992).

19.

19.E. B. Flint and K. S. Suslick, “Sonoluminescence from nonaqueous fluids: emission from small molecules,” J. Am. Chem. Soc. 111, 6987 (1989).

20.

20.P. Jarman, “Sonoluminescence: A discussion,” J. Acoust. Soc. Am. 32, 1459 (1960).

21.

21.H. P. Greenspan and A. Nadim, “On sonoluminescence of an oscillating gas bubble,” Phys. Fluids A 5, 1065 (1993).

22.

22.C. C. Wu and P. H. Roberts, “Shock-wave propagation in a sonoluminescing gas bubble,” Phys. Rev. Lett. 70, 3424 (1993);

22.C. C. Wu and P. H. Roberts, “A model of sonoluminescence,” Proc. R. Soc. London, Ser. A 445, 323 (1994).

23.

23.M. P. Brenner, R. Rosales, S. Hilgenfeldt, and D. Lohse, “Acoustic energy storage in single bubble sonoluminescence,” to appear in Phys. Rev. Lett.

24.

24.L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987).

25.

25.D. Lohse, M. P. Brenner, T. F. Dupont, S. Hilgenfeldt, and B. Johnston, “Sonoluminescing air bubbles rectify argon,” preprint, September 1996.

26.

26.M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Why air bubbles in water glow so easily,” in Nonlinear Physics of Complex Systems—Current Status and Future Trends, edited by J. Parisi, S. C. Müller, and W. Zimmermann (Springer, Berlin, 1996).

27.

27.Lord Rayleigh, “On the pressure developed in a liquid on the collapse of a spherical bubble,” Philos. Mag. 34, 94 (1917).

28.

28.M. S. Plesset, “The dynamics of cavitation bubbles,” J. Appl. Mech. 16, 277 (1949).

29.

29.G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I,” Proc. R. Soc. London, Ser. A 201, 192 (1950).

30.

30.W. Lauterborn, “Numerical investigation of nonlinear oscillations of gas bubbles in liquid,” J. Acoust. Soc. Am. 59, 283 (1976).

31.

31.M. S. Plesset and A. Prosperetti, “Bubble dynamics and cavitation,” Annu. Rev. Fluid Mech. 9, 145 (1977).

32.

32.J. B. Keller and M. J. Miksis, “Bubble oscillations of large amplitude,” J. Acoust. Soc. Am. 68, 628 (1980);

32.B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Phys. Soc. London B 63, 674 (1950);

32.E. A. Neppiras and B. E. Noltingk, “Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation,” Proc. Phys. Soc. London B B64, 1032 (1951).Further references can be found in Brennen’s book (Ref. 33)., Proc. R. Soc. London, Ser. B

33.

33.C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).

34.

34.P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquidgas solutions,” J. Chem. Phys. 18, 1505 (1950).

35.

35.A. Eller and L. A. Crum, “Instability of the motion of a pulsating bubble in a sound field,” J. Acoust. Soc. Am. 47, 762 (1970).

36.

36.L. A. Crum, “Sonoluminescence,” Phys. Today 47, 22 (1994).

37.

37.M. M. Fyrillas and A. J. Szeri, “Dissolution or growth of soluble spherical oscillating bubbles,” J. Fluid Mech. 277, 381 (1994).

38.

38.V. Q. Vuong and A. J. Szeri, “Sonoluminescence and diffusive transport,” Phys. Fluids 8, 2354 (1996).

39.

39.W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979 (1994);

39.L. Kondic, J. I. Gersten, and C. Yuan, “Theoretical studies of sonoluminescence radiation: radiative transfer and parametric dependence,” Phys. Rev. E 52, 4976 (1995).

40.

40.The recent calculations of Vuong and Szeri (Ref. 38) incorporate dissipation mechanisms and do not find shocks.

41.

41.V. Kamath, A. Prosperetti, and F. N. Egolfopoulos, “A theoretical study of sonoluminescence,” J. Acoust. Soc. Am. 94, 248 (1993).

42.

42.M. P. Brenner, D. Lohse, D. Oxtoby, and T. F. Dupont, “Mechanisms for stable single bubble sonoluminescence,” Phys. Rev. Lett. 76, 1158 (1996).

43.

43.A. Eller and H. G. Flynn, “Rectified diffusion during nonlinear pulsations of cavitation bubbles,” J. Acoust. Soc. Am. 37, 493 (1964).

44.

44.G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1970).

45.

45.For a passive scalar as e.g., the gas concentration the analogous length scale is where D is the diffusion constant. In Section V we perform a full numerical simulation for the diffusive problem and indeed see that is the thickness of the boundary layer around the bubble.

46.

46.A very similar reasoning was applied to the (thermal) boundary layer around the probe measuring the temperature in turbulent helium, seeS. Grossmann and D. Lohse, “Characteristic scales in Rayleigh-Benard turbulence,” Phys. Lett. A 173, 58 (1993).

47.

47.S. Grossmann, S. Hilgenfeldt, D. Lohse, and M. P. Brenner, “Analysis of the Rayleigh-Plesset bubble dynamics for large forcing pressure,” in preparation, September 1996.

48.

48.F. G. Blake, J. Acoust. Soc. Am. 21, 551 (1949);

48.V. Bjerknes, Die Kraftfelder (Friedrich Vieweg, Braunschweig, 1909).

49.

49.G. Guderley, “Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse,” Luftfahrtforsch. 19, 302 (1942).

50.

50.E. J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991).

51.

51.L. A. Crum and S. Cordry, “Single bubble sonoluminescence,” in Bubble Dynamics and Interface Phenomena, edited by J. Blake et al., (Kluwer Academic, Dordrecht, 1994), p. 287.

52.

52.B. Gompf (private communication, 1996).

53.

53.M. M. Fyrillas and A. J. Szeri, “Dissolution or growth of soluble spherical oscillating bubbles: The effect of surfactants,” J. Fluid Mech. 289, 295 (1995).

54.

54.M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Phase locking in single bubble sonoluminescence,” preprint, September 1996.

http://aip.metastore.ingenta.com/content/aip/journal/pof2/8/11/10.1063/1.869131

Article metrics loading...

/content/aip/journal/pof2/8/11/10.1063/1.869131

1996-11-01

2016-12-07

Full text loading...

###
Most read this month

Article

content/aip/journal/pof2

Journal

5

3

true

Commenting has been disabled for this content