Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/8/3/10.1063/1.868864
1.
1.L. Lees and C. C. Lin, “Investigation of the stability of the laminar boundary layer in a compressible fluid,” NACA Tech. Note No. 1115, 1946.
2.
2.L. M. Mack, “Stability of the laminar compressible boundary layer according to a direct numerical solution,” inAGARDograph 97, Part I, 329 (1965).
3.
3.L. M. Mack, “Computation of the stability of the laminar compressible boundary layer,” Methods Comput. Phys. 4, 247 (1965).
4.
4.L. M. Mack, “Linear stability theory and the problem of supersonic boundary layer transition,” AIAA J. 13, 278 (1975).
5.
5.L. M. Mack, “Boundary layer stability theory,”AGARD Conference Proceedings No. 224, pp. 1–1–1–22, NATO, Paris, 1984.
6.
6.D. Arnal, “Stability and transition of two-dimensional laminar boundary layers in compressible flow over an adiabatic wall,” Rech. Aerosp. 1988–4, 15 (1988).
7.
7.M. R. Malik, “Prediction and control of transition in hypersonic boundary layers,” AIAA Paper No. 87–1414, 1987.
8.
8.M. R. Malik, “Prediction and control of transition in supersonic and hypersonic boundary layers,” AIAA J. 27, 1487 (1989).
9.
9.Z. H. Zurigat, A. H. Nayfeh, and J. A. Masad, “Effect of pressure gradient on the stability of compressible boundary layers,” AIAA Paper No. 90–1451, 1990.
10.
10.P. Balakumar and M. R. Malik, “Waves produced from a harmonic source in a supersonic boundary layer flow,” J. Fluid Mech. 242, 323 (1992).
11.
11.L. Boberg and U. Brosa, “Onset of turbulence in a pipe,” Z. Naturforschung 43a, 697 (1988).
12.
12.K. M. Butler and B. F. Farrell, “Three-dimensional optimal perturbations in viscous shear flow,” Phys. Fluids A 4, 1637 (1992).
13.
13.L. H. Gustavsson, “Energy growth of three-dimensional disturbances in plane Poiseuille flow,” J. Fluid Mech. 224, 241 (1991).
14.
14.S. C. Reddy and D. S. Henningson, “Energy growth in viscous channel flows,” J. Fluid Mech. 252, 209 (1993).
15.
15.P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 197 (1994).
16.
16.L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, “Hydrodynamic stability without eigenvalues,” Science 261, 578 (1993).
17.
17.M. R. Malik, “Numerical methods for hypersonic boundary layer stability,” J. Comput. Phys. 86, 376 (1990).
18.
18.L. S. Hultgren and L. H. Gustavsson, “Algebraic growth of disturbances in a laminar boundary layer,” Phys. Fluids 24, 1000 (1981).
19.
19.P. J. Schmid and D. S. Henningson, “A new mechanism for rapid transition involving a pair of oblique waves,” Phys. Fluids A 4, 1986 (1992).
20.
20.D. S. Henningson, A. Lundbladh, and A. V. Johansson, “A mechanism for bypass transition from localized disturbances in wall bounded shear flows,” J. Fluid Mech. 250, 169 (1993).
21.
21.G. Kreiss, A. Lundbladh, and D. S. Henningson, “Bounds for threshold amplitudes in subcritical shear flows,” J. Fluid Mech. 270, 175 (1994).
22.
22.S. Berlin, A. Lundbladh, and D. S. Henningson, “Spatial simulations of oblique transition,” Phys. Fluids 6, 1949 (1994).
23.
23.H. Fasel, A. Thumm, and H. Bestek, “Direct numerical simulation of transition in supersonic boundary layers: Oblique breakdown,” Transitional and Turbulent Compressible Flows, edited by L. D. Kral and T. A. Zang, ASME FED-Vol. 151, pp. 77–92.
24.
24.R. J. Gathmann, M. Si-Ameur, and F. Mathey, “Numerical simulations of three-dimensional natural transition in the compressible confined shear layer,” Phys. Fluids A 5, 2946 (1993).
25.
25.C.-L. Chang and M. R. Malik, “Oblique-mode breakdown and secondary instability in supersonic boundary layers,” J. Fluid Mech. 273, 323 (1994).
26.
26.N. D. Sandham, N. A. Adams, and L. Kleiser, “Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer,” Appl. Sci. Res. 54, 223 (1995).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/8/3/10.1063/1.868864
Loading
/content/aip/journal/pof2/8/3/10.1063/1.868864
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/8/3/10.1063/1.868864
1996-03-01
2016-12-09
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/8/3/10.1063/1.868864&pageURL=http://scitation.aip.org/content/aip/journal/pof2/8/3/10.1063/1.868864'
Right1,Right2,Right3,