Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/9/3/10.1063/1.869217
1.
1.L. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D 12, 1473 (1979).
2.
2.P. G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. 57, 827 (1985).
3.
3.A. M. Cazabat and M. A. Cohen Stuart, “Dynamics of wetting: Effects of surface roughness,” J. Phys. Chem. 90, 5845 (1986).
4.
4.L. M. Hocking, “Sliding and spreading of thin two-dimensional drops,” Q. J. Mech. Appl. Math. 34, 37 (1981).
5.
5.Michael Brenner and Andrea Bertozzi, “Spreading of droplets on a solid surface,” Phys. Rev. Lett. 71, 593 (1993).
6.
6.H. Huppert, “Flow and instability of a viscous current down a slope,” Nature 300, 427 (1982).
7.
7.N. Silvi and E. B. Dussan, “On the rewetting of an inclined solid surface by a liquid,” Phys. Fluids 28, 5 (1985).
8.
8.John M. Jerrett and John R. de Bruyn, “Finger instability of a gravitationally driven contact line,” Phys. Fluids A 4, 234 (1992).
9.
9.John R. de Bruyn, “Growth of fingers at a driven three-phase contact line,” Phys. Rev. A 46, R4500 (1992).
10.
10.F. Melo, J. F. Joanny, and S. Fauve, “Fingering instability of spinning drops,” Phys. Rev. Lett. 63, 1958 (1989).
11.
11.Nathalie Fraysse and George M. Homsy, “An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids,” Phys. Fluids 6, 6 (1994).
12.
12.A. M. Cazabat, F. Heslot, S. M. Troian, and P. Carles, “Finger instability of thin spreading films driven by temperature gradients,” Nature 346, 824 (1990).
13.
13.J. B. Brzoska, F. Brochard-Wyart, and F. Rondelez, “Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients,” Europhys. Lett. 19, 97 (1992).
14.
14.S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, “Fingering instabilities of driven spreading films,” Europhys. Lett. 10, 25 (1989).
15.
15.L. Hocking, “Spreading and instability of a viscous fluid sheet,” J. Fluid Mech. 221, 373 (1990).
16.
16.J. A. Moriarty, L. W. Schwartz, and E. O Tuck, “Unsteady spreading of thin liquid films with small surface tension,” Phys. Fluids A 3, 733 (1991).
17.
17.R. Goodwin and G. M. Homsy, “Viscous flow down a slope in the vicinity of a contact line,” Phys. Fluids A 3, 515 (1991).
18.
18.Leonard W. Schwartz, “Viscous flows down an inclined plane: Instability and finger formation,” Phys. Fluids A 1, 443 (1989).
19.
19.L. M. Hocking and M. J. Miksis, “Stability of a ridge of fluid,” J. Fluid Mech. 247, 157 (1993).
20.
20.M. A. Spaid and G. M. Homsy, “Stability of Newtonian and viscoelastic dynamic contact angles,” Phys. Fluids 8, 460 (1996).
21.
21.Michael P. Brenner, “Instability mechanisms at driven contact lines,” Phys. Rev. E 47, 4597 (1993).
22.
22.H. P. Greenspan, “On the motion of a small viscous droplet that wets a surface,” J. Fluid Mech. 84, 125 (1978).
23.
23.Patrick J. Haley and Michael J. Miksis, “The effect of the contact line on droplet spreading,” J. Fluid Mech. 223, 57 (1991).
24.
24.L. M. Hocking, “Rival contact-angle models and the spreading of drops,” J. Fluid. Mech. 239, 671 (1992).
25.
25.E. B. Dussan V and S. Davis, “On the motion of a fluid-fluid interface along a solid surface,” J. Fluid Mech. 65, 71 (1974).
26.
26.E. B. Dussan V, “The moving contact line: the slip boundary condition,” J. Fluid Mech. 77, 665 (1976).
27.
27.J. de Bruyn, private communication (1995).
28.
28.Andrea L. Bertozzi, “Symmetric singularity formation in lubrication-type equations for interface motion,” SIAM J. Appl. Math. 56, 681 (1996).
29.
29.G. Homsy and an anonymous referee pointed out this scenario to us.
30.
30.L. Landau and E. Lifshitz, Fluid Mechanics (Permagon, Oxford, 1987).
31.
31.Brian F. Farrell and Petros J. Ioannou, “Variance maintained by stochastic forcing of non-normal dynamical systems associated with linearly stable shear flows,” Phys. Rev. Lett. 72, 1188 (1994).
32.
32.Brian F. Farrell and Petros J. Ioannou, “Stochastic forcing of the linearized Navier-Stokes equations,” Phys. Fluids A 5, 2600 (1993).
33.
33.K. B. Butler and B. F. Farrell, “Optimal perturbations and streak spacing in wall bounded shear flow,” Phys. Fluids A 5, 774 (1993).
34.
34.Lloyd N. Trefethen, Anne E. Trefethen, Satish C. Reddy, and Tobin A. Driscoll, “Hydrodynamic stability without eigenvalues,” Science 261, 578 (1993).
35.
35.D. S. Hennison and S. Reddy, “On the role of linear mechanisms in transition to turbulence,” Phys. Fluids A 6, 1396 (1994).
36.
36.Jeffrey S. Baggett, Tobin A. Driscoll, and Lloyd N. Trefethen, “A mostly linear model of transition to turbulence,” (1996).
37.
37.L. Boberg and U. Brosa, Z. Naturforsch. A 43, 697 (1988).
38.
38.A. M. Cazabat (private communication).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/9/3/10.1063/1.869217
Loading
/content/aip/journal/pof2/9/3/10.1063/1.869217
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/9/3/10.1063/1.869217
1997-03-01
2016-09-25
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/9/3/10.1063/1.869217&pageURL=http://scitation.aip.org/content/aip/journal/pof2/9/3/10.1063/1.869217'
Right1,Right2,Right3,