Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/12/5/10.1063/1.1876292
1.
1.A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor and Francis, London, 1993).
2.
2.R. F. Trunin, Shock Compression of Condensed Materials (Cambridge University Press, London, 1998).
3.
3.C. E. Ragan III, Phys. Rev. A 21, 458 (1980).
http://dx.doi.org/10.1103/PhysRevA.21.458
4.
4.D. Batani, A. Balducci, D. Beretta, A. Bernardinello, T. Lower, M. Koeing, A. Benuzzi, B. Faral, and T. Hall, Phys. Rev. B 61, 14 (2000);
http://dx.doi.org/10.1103/PhysRevB.61.14078
4.D. Batani, A. Balducci, D. Beretta, A. Bernardinello, T. Lower, M. Koeing, A. Benuzzi, B. Faral, and T. Hall, Phys. Rev. B61, 9287 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.9287
5.
5.S. D. Rothman, A. M. Evans, P. Graham, C. J. Horsefield, and T. Jalinaud, J. Phys. D 35, 22 3021 (2002).
http://dx.doi.org/10.1088/0022-3727/35/22/318
6.
6.A. Benuzzi-Mounaix, M. Koenig, G. Huser et al., Phys. Plasmas 9, 6 2466 (2002);
http://dx.doi.org/10.1063/1.1478557
6.A. Benuzzi-Mounaix, M. Koenig, G. Huser et al., Phys. Plasmas9, 2466 (2002).
http://dx.doi.org/10.1063/1.1478557
7.
7.S. D. McGrane, D. S. Moore, and D. J. Funk, J. Phys. Chem. A 108, 43 (2004);
7.S. D. McGrane, D. S. Moore, and D. J. Funk, J. Phys. Chem. A108, 9342 (2004).
8.
8.K. G. Makamura, H. Kawano, H. Kishimura, Y. Okano, Y. Hironaka, and K. I. Kondo, Jpn. J. Appl. Phys., Part 1 43, 5477 (2004).
9.
9.See National Technical Information Service Document No. DE94014474 (J. M. Mack et al., description of capabilities of TRIDENT laser). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.
10.
10.See National Technical Information Service Document No. DE2002-15002088 (J. Dunn et al., description of the JANUS facility for shock generation, Lawrence Livermore National Laboratory Report UCRL-JC-145171). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.
11.
11.D. C. Swift, T. E. Tierney IV, R. A. Kopp, and J. T. Gammel, Phys. Rev. E 69, 036406 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036406
12.
12.D. C. Swift, J. T. Gammel, and S. M. Clegg, Phys. Rev. E 69, 056401 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.056401
13.
13.J. R. Asay, in Shock Compression of Condensed Matter—1999, edited by M. D. Furnish, L. C. Chhabildas, and R. S. Hixson (American Institute of Physics, New York, 2000), p. 261.
14.
14.D. B. Reisman, A. Toor, R. C. Cauble, C. A. Hall, J. R. Asay, M. D. Knudson, and M. D. Furnish, J. Appl. Phys. 89, 1625 (2001).
http://dx.doi.org/10.1063/1.1337082
15.
15.J. Edwards, K. T. Lorenz, B. A. Remington et al., Phys. Rev. Lett. 92, 075002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.075002
16.
16.D. C. Swift and R. P. Johnson, “Quasi-isentropic compression by ablative laser loading: Response of materials to dynamic loading on nanosecond time scales,” Phys. Rev. E (accepted for publication).
17.
17.L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
http://dx.doi.org/10.1063/1.1660986
18.
18.J. Nguyen (private communication).
19.
19.H. Yoneda, H. Morikami, K. Ueda, and R. M. More, Phys. Rev. Lett. 91, 075004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.075004
20.
20.D. C. Swift, G. J. Ackland, A. Hauer, and G. A. Kyrala, Phys. Rev. B 64, 214107 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214107
21.
21.See National Technical Information Service Document No. DE94011699 (J. D. Johnson, description of the SESAME database, Los Alamos National Laboratory Report LA-UR-94-1451). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.
22.
22.D. J. Steinberg, Lawrence Livermore National Laboratory Report No. UCRL-MA-106439 change 1, 1996 (unpublished).
23.
23.S.-N. Luo, T. J. Ahrens, T. Cagin, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. E 68, 134206 (2003).
24.
24.See National Technical Information Service Document No. DE2004-15007230 (E. I. Moses, introduction to the National Ignition Facility). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.
25.
25.D. C. Swift, D. L. Paisley, G. A. Kyrala, and A. Hauer, in Shock Compression of Condensed Matter—2001, edited by M. D. Furnish, N. N. Thadhani, and Y. Horie (American Institute of Physics, New York, 2002), p. 1192.
26.
26.N. M. Hoffman and D. C. Swift, in Shock Compression of Condensed Matter—2003, edited by M. D. Furnish, Y. M. Gupta, and J. W. Forbes (American Institute of Physics, New York, 2004), p. 1339.
27.
27.See National Technical Information Service Document No. DE91013164 (University of Rochester report on Laboratory for Laser Energetics). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.
28.
28.D. C. Swift, J. G. Niemczura, D. L. Paisley, R. P. Johnson, S.-N. Luo, and T. E. Tierney, “Laser-launched flyer plates for shock physics experiments,” Rev. Sci. Instrum. (submitted).
29.
29.J. D. Colvin, E. R. Ault, W. E. King, and I. H. Zimmerman, Phys. Plasmas 10, 2940 (2003).
http://dx.doi.org/10.1063/1.1581285
http://aip.metastore.ingenta.com/content/aip/journal/pop/12/5/10.1063/1.1876292
Loading
/content/aip/journal/pop/12/5/10.1063/1.1876292
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/12/5/10.1063/1.1876292
2005-04-18
2016-02-11

Abstract

During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures—such as iron—may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least .

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/12/5/1.1876292.html;jsessionid=aa6kdsu1qgrap.x-aip-live-02?itemId=/content/aip/journal/pop/12/5/10.1063/1.1876292&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd