1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Development of an ITER relevant advanced scenario at ASDEX Upgradea)
a)Paper BI16, Bull. Am. Phys. Soc. , 21 (2004).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/12/5/10.1063/1.1913641
1.
1.ITER Physics Basis, Nucl. Fusion 39, 2137 (1999).
http://dx.doi.org/10.1088/0029-5515/39/12/301
2.
2.O. Gruber, R. Wolf, R. Dux et al., Phys. Rev. Lett. 83, 1787 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1787
3.
3.O. Gruber, R. Arslanbekov, C. Atanasiu et al., Nucl. Fusion 41, 1369 (2001).
http://dx.doi.org/10.1088/0029-5515/41/10/306
4.
4.A. C.C. Sips, R. Arslanbekov, C. Atanasiu et al., Plasma Phys. Controlled Fusion 44, B69 (2002).
http://dx.doi.org/10.1088/0741-3335/44/12B/306
5.
5.M. R. Wade, T. C. Luce, P. A. Politzer, Proceedings of the 29th EPS Conference on Controlled Fusion and Plasma Physics, Montreux, Switzerland, 2002 [Europhys. Conf. Abstr. 26B, O2 (2002)].
6.
6.A. C.C. Sips, E. Joffrin, M. de Baar et al., Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, Russia, 2003, edited by R. Koch and S. Lebedev [Europhys. Conf. Abstr. 27A, O1 (2003)].
7.
7.Y. Kamada, A. Isayama, T. Oikawa et al., Nucl. Fusion 39, 1845 (1999).
http://dx.doi.org/10.1088/0029-5515/39/11Y/325
8.
8.O. Gruber, R. Wolf, H.-S. Bosch et al., Nucl. Fusion 40, 1145 (2000).
http://dx.doi.org/10.1088/0029-5515/40/6/312
9.
9.T. C. Luce, M. R. Wade, J. R. Ferron et al., Nucl. Fusion 43, 321 (2003).
http://dx.doi.org/10.1088/0029-5515/43/5/304
10.
10.S. Günter, A. Gude, K. Lackner, M. Maraschek, S. D. Pinches, S. Sesnic, R. Wolf, and ASDEX Upgrade Team, Nucl. Fusion 39, 1535 (1999).
http://dx.doi.org/10.1088/0029-5515/39/11/304
11.
11.S. Günter, J. Hobirk, K. Lackner, G. Pereverzev, A. Stäbler, and ASDEX Upgrade Team, Proceedings of the 31st EPS Conference on Controlled Fusion and Plasma Physics, London, 2004, edited by A. M. Pick [Europhys. Conf. Abstr. 28G, O1 (2004)].
12.
12.M. R. Wade, T. C. Luce, R. J. Jayakumar et al., Proceedings of the 20th IAEA Conference on Fusion Energy, Vilamoura, Portugal, 2004, IAEA-CSP-25/CD (IAEA, Vienna, 2005), CN-166/EX/4-1.
13.
13.S. Günter, M. Maraschek, M. de Baar, D. F. Howell, E. Poli, E. Strumberger, C. Tichmann, ASDEX Upgrade Team, and EFDA-JET contributors, Nucl. Fusion 44, 524 (2004).
14.
14.A. Staebler, A. C.C. Sips, M. Brambilla et al., Nucl. Fusion (accepted).
15.
15.A. G. Peeters, O. Gruber, S. Günter et al., Nucl. Fusion 42, 1376 (2002).
http://dx.doi.org/10.1088/0029-5515/42/12/304
16.
16.Y.-S. Na, A. C.C. Sips, E. Joffrin, A. Staebler, G. Tardini, ASDEX Upgrade Team, and EFDA-JET contributors, Proceedings of the 31st EPS Conference on Controlled Fusion and Plasma Physics, London, 2004, edited by A. M. Pick [Europhys. Conf. Abstr. 28G, P4 (2004)].
17.
17.A. Manini, F. Ryter, C. Angioni et al., Plasma Phys. Controlled Fusion 46, 1723 (2004).
18.
18.C. Angioni, A. G. Peeters, X. Garbet, A. Manini, F. Ryter, and ASDEX Upgrade Team, Nucl. Fusion 44, 827 (2004).
http://dx.doi.org/10.1088/0029-5515/44/8/003
19.
19.R. E. Waltz, G. M. Staebler, W. Dorland, G. W. Hammett, M. Kotschenreuther, and J. A. Konings, Phys. Plasmas 4, 2482 (1997).
http://dx.doi.org/10.1063/1.872228
20.
20.C. Angioni, A. G. Peeters, G. V. Pereverzev, G. V.F. Ryter, G. Tardini, and ASDEX Upgrade Team, Phys. Rev. Lett. 90, 205003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.205003
21.
21.J. Stober, R. Dux, O. Gruber et al., Nucl. Fusion 43, 1265 (2003).
22.
22.J. G. Cordey, J. A. Snipes, M. Greenwald et al., Proceedings of the 20th IAEA Conference on Fusion Energy, Vilamoura, Portugal, 2004, IAEA-CSP-25/CD (IAEA, Vienna, 2005), CN-166//IT/P3-32.
23.
23.R. Neu, R. Dux, A. Geier, H. Greuner, K. Krieger, H. Maier, R. Pugno, V. Rohde, S. W. Yoon, and ASDEX Upgrade Team, J. Nucl. Mater. 313–316, 116 (2003).
24.
24.R. Dux, R. Neu, C. F. Maggi et al., Proceedings of the 20th IAEA Conference on Fusion Energy, Vilamoura, Portugal, 2004, IAEA-CSP-25/CD (IAEA, Vienna, 2005), CN-166/EX/P6-14.
25.
25.C. F. Maggi, R. Dux, L. D. Horton, R. Neu, D. Nishijima, T. Pütterich, A. C.C. Sips, B. Zaniol, and ASDEX Upgrade Team, Proceedings of the 31st EPS Conference on Controlled Fusion and Plasma Physics, London, 2004, edited by A. M. Pick [Europhys. Conf. Abstr. 28G, P4 (2004)].
26.
26.R. Neu, R. Dux, A. Kallenbach et al., Nucl. Fusion 45, 209 (2005).
27.
27.O. Gruber et al., Proceedings of the 19th IAEA Conference on Fusion Energy, Lyon, France, 2002, IAEA-CSP-19/CD (IAEA, Vienna, 2002), CN-94/EX/C2-1.
28.
28.Y.-S. Na, A. C.C. Sips, O. Gruber, J. Hobirk, G. Pereverzev, and ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 44, 1285 (2002).
29.
29.G. V. Pereverzev and O. V. Zolotukhin, Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, Russia, 2003, edited by R. Koch and S. Lebedev [Europhys. Conf. Abstr. 27A, P3 (2003)].
http://aip.metastore.ingenta.com/content/aip/journal/pop/12/5/10.1063/1.1913641
Loading
/content/aip/journal/pop/12/5/10.1063/1.1913641
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/12/5/10.1063/1.1913641
2005-05-11
2014-07-31

Abstract

The “improved -mode,” realized in ASDEX Upgrade [A. Herrmann and O. Gruber, Fusion Sci. Technol.44, 569 (2003)] in 1998, demonstrates that advanced requirements beyond the standard -mode for confinement [confinement enhancement factor ], stability (normalized beta ) and, at densities close to Greenwald density, exhaust can be simultaneously met and maintained stationary for several resistive diffusion times. The profile is characterized by low central magnetic shear and axis safety factor that is obtained by particular heating and current ramp-up scenarios and maintained via benign instabilities. Core transport is still governed by drift-wave turbulence with stiff temperature profiles, but density profiles are more strongly peaked and contribute to the increase in confinement. Neoclassical tearing modes remain small, enabling routine operation up to at international thermonuclear experimental reactor (ITER) relevant collisionalities, for normalized Lamor radii down to four times the ITER value and for a broad range of . Using tailored heat deposition including central wave heating a compromise was found in density peaking for enhanced confinement and limiting the high- impurity concentrations even with a tungsten-coated first wall and divertor. As far as the ITER [ITER EDA Documentation Series No. 24, 2002] relevance of this regime is concerned, its compatibility with significant central electron heating, high edge densities, and type-II edge localized modes is of importance. The GLF23 turbulence model predicts still peaked density profiles and sufficient transport to avoid impurity accumulation. The fusion performance in terms of is nearly doubled compared with the ITER base-line scenario at low- values, while at medium ’s bootstrap current fractions up to 50% and long inductive pulse lengths allow ITER “hybrid” operation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/12/5/1.1913641.html;jsessionid=1oj8gmluq8qt1.x-aip-live-02?itemId=/content/aip/journal/pop/12/5/10.1063/1.1913641&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Development of an ITER relevant advanced scenario at ASDEX Upgradea)
http://aip.metastore.ingenta.com/content/aip/journal/pop/12/5/10.1063/1.1913641
10.1063/1.1913641
SEARCH_EXPAND_ITEM