1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Pathway to a lower cost high repetition rate ignition facilitya)
a) Paper UI1 6, Bull. Am. Phys. Soc. 50, 343 (2005).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/13/5/10.1063/1.2198796
1.
1.S. E. Bodner, D. G. Colombant, J. H. Gardner et al., Phys. Plasmas1070-664X 5, 1901 (1998).
http://dx.doi.org/10.1063/1.872861
2.
2.J. D. Sethian, M. Friedman, R. H. Lehmberg et al., Nucl. Fusion0029-5515 43, 1693 (2003).
http://dx.doi.org/10.1088/0029-5515/43/12/015
3.
3.W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion0029-5515 41, 567 (2001).
http://dx.doi.org/10.1088/0029-5515/41/5/309
4.
4.T. R. Boehly, R. S. Craxton, T. H. Hinterman et al., Rev. Sci. Instrum.0034-6748 66, 508 (1995).
http://dx.doi.org/10.1063/1.1146333
5.
5.R. L. McCrory, S. P. Regan, S. J. Louchs et al., Nucl. Fusion0029-5515 45, S283 (2005).
http://dx.doi.org/10.1088/0029-5515/45/10/S24
6.
6.S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science, Oxford, 2004), Chap. 5.
7.
7.J. Lindl, Inertial Confinement Fusion, The Quest for Ignition and High Gain Using Indirect Drive (Springer, New York, 1997), Chap. 5.
8.
8.S. A. Payne, C. Bibeau, R. J. Beach, A. Bayramian, J. C. Chanteloup, C. A. Ebbers, M. A. Emanuel, H. Nakana, C. D. Orth, J. E. Rothenberg, K. I. Schaffers, L. G. Seppala, J. A. Skidmore, S. B. Sutton, L. E. Zapata, and H. T. Powell, J. Fusion Energy0164-0313 17, 213 (1998).
9.
9.F. Cotte, J. P. Romain, R. Fabbro, and B. Farel, Phys. Rev. Lett.0031-9007 52, 1884 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1884
10.
10.M. Tabak, D. S. Clark, and S. P. Hatchett, Phys. Plasmas1070-664X 12, 057305 (2005).
http://dx.doi.org/10.1063/1.1871246
11.
11.R. Kodama, P. A. Norreys, K. Mima et al., Nature (London)0028-0836 412, 798 (2001).
http://dx.doi.org/10.1038/35090525
12.
12.M. Murakami, H. Nagatomo, T. Sakaiya, H. Azechi, S. Fujioka, H. Shiraga, M. Nakai, K. Shigemori, H. Saito, S. Obenschain, M. Karasik, J. Gardner, J. Batees, D. Colombant, J. Weaver, and Y. Aglitskiy, Plasma Phys. Controlled Fusion0741-3335 47, B815 (2005).
http://dx.doi.org/10.1088/0741-3335/47/12B/S63
13.
13.D. G. Colombant, S. P. Obenschain, and A. Schmitt, “Submegajoule laser target designs for direct-drive ignition and moderate gains” Nucl Fusion (submitted).
14.
14.J. H. Gardner, A. J. Schmitt, J. P. Dahlburg et al., Phys. Plasmas1070-664X 5, 1935 (1998).
http://dx.doi.org/10.1063/1.872863
15.
15.N. Metzler, A. L. Velikovich, A. J. Schmitt, and J. H. Gardner, Phys. Plasmas1070-664X 9, 5050 (2002).
http://dx.doi.org/10.1063/1.1517610
16.
16.V. N. Goncharov, J. P. Knauer, P. W. McKenty, P. B. Radha, T. C. Sangster, S. Skupsky, R. Betti, R. L. McCrory, and D. D. Meyerhofer, Phys. Plasmas1070-664X 10, 1906 (2003).
http://dx.doi.org/10.1063/1.1562166
17.
17.R. Betti, K. Anderson, J. Knauer, T. J. B. Collins, R. L. McCrory, P. W. McKenty and S. Skupsky, Phys. Plasmas1070-664X 12, 1906 (2005).
18.
18.J. P. Knauer, K. Anderson, R. Betti et al., Phys. Plasmas1070-664X 12, 056306 (2005).
http://dx.doi.org/10.1063/1.1882332
19.
19.J. L. Weaver, A. L. Velekovich, M. Karasik et al., Bull. Am. Phys. Soc.0003-0503 50, 8 (2005);
19.J. L. Weaver, A. L. Velekovich, M. Karasik et al., Bull. Am. Phys. Soc.0003-0503 50, 311 (2005).
20.
20.A. J. Schmitt, D. G. Colombant, A. L. Velikovich, and S. T. Zalesak, Phys. Plasmas1070-664X 11, 2716 (2004).
http://dx.doi.org/10.1063/1.1667485
21.
21.M. C. Herrmann, M. Tabak, J. D. Lindl, Nucl. Fusion0029-5515 41, 99 (2001).
http://dx.doi.org/10.1088/0029-5515/41/1/308
22.
22.K. Anderson and R. Betti, Phys. Plasmas1070-664X 10, 4448 (2003).
http://dx.doi.org/10.1063/1.1616559
23.
23.S. E. Bodner, D. G. Colombant, A. J. Schmitt, and M. Klapisch, Phys. Plasmas1070-664X 7, 2298 (2000).
http://dx.doi.org/10.1063/1.874063
24.
24.S. T. Zalesak, A. J. Schmitt, A. L. Velikovich, and J. H. Gardner, Phys. Plasmas1070-664X 12, 056311 (2005).
http://dx.doi.org/10.1063/1.1885004
25.
25.A. I. Nikitenko, S. M. Tolokonnikov, and R. Cook, Fusion Technol.0748-1896 31, 385 (1997).
26.
26.A. Nikroo, J. Bousquet, R. Cook, B. W. McQuillan, R. Paguio, and M. Takagi, Fusion Sci. Technol.1536-1055, 45, 165 (2004).
27.
27.S. P. Obenschain, D. G. Colombant, M. Karasik et al., Phys. Plasmas1070-664X 9, 2234 (2002).
http://dx.doi.org/10.1063/1.1464541
28.
28.B. Yaakobi, C. Stoeckl, W. Seka, J. A. Delettrez, T. C. Sangster, and D. D. Meyerhofer, Phys. Plasmas1070-664X 12, 062703 (2005).
http://dx.doi.org/10.1063/1.1928193
29.
29.S. P. Obenschain, S. E. Bodner, D. Colombant et al., Phys. Plasmas1070-664X 3, 2098 (1996).
http://dx.doi.org/10.1063/1.871661
30.
30.R. H. Lehmberg and J. Goldhar, Fusion Technol.0748-1896 11, 532 (1987).
31.
31.M. Friedman, Y. Chan, S. Obenschain, J. D. Sethian, and S. B. Swanekamp, Appl. Phys. Lett.0003-6951 83, 1539 (2003).
http://dx.doi.org/10.1063/1.1605244
32.
32.F. Hegeler, D. V. Rose, M. C. Myers, J. D. Sethian, J. L. Giuliani, M. F. Wolford, and M. Friedman, Phys. Plasmas1070-664X 11, 5010 (2004).
http://dx.doi.org/10.1063/1.1795196
33.
33.Y. Owadano, I. Okuda, Y. Matsumoto, I. Matsushima, E. Takahashi, E. Miura, H. Yashiro, T. Tomie, K. Kuwahara, and M. Shinbo, Fusion Eng. Des.0920-3796 44, 91 (1999).
34.
34.J. A. Sillivan, G. R. Allen, R. R. Bergren et al., Laser Part. Beams0263-0346 11, 259 (1993).
35.
35.J. D. Sethian et al., Proc. IEEE0018-9219 92, 1043 (2004).
http://dx.doi.org/10.1109/JPROC.2004.829051
36.
36.S. P. Obenschain, S. E. Bodner, D. Colombant et al., Phys. Plasmas1070-664X 3, 2098 (1996).
http://dx.doi.org/10.1063/1.871661
37.
37.M. S. Tillack, J. E. Pulsifer, K. L. Sequoia, and R. Harrison, “Grazing-incidence metal mirrors for final optics,” High Average Power Laser Workshop, Livermore, CA, June 2005, Vol. 12, see http://aries.ucsd.edu/HAPL/MEETINGS/0506-HAPL/t04tillack.ppt.
38.
38.S. J. Zinkle, Phys. Plasmas1070-664X 12, 058101 (2005).
http://dx.doi.org/10.1063/1.1880013
39.
39.R. Raffray, J. Nucl. Mater.0022-3115 347, 178 (2005).
40.
40.S. J. Zinkle, Phys. Plasmas1070-664X 12, 058101 (2005).
http://dx.doi.org/10.1063/1.1880013
41.
41.R. Goldston, M. Abdou, C. Baker, M. Campbell, V. Chan, S. Dean, A. Hubbard, R. Iotti, T. Jarboe, J. Lindl, B. G. Logan, K. McCarthy, F. Najmabadi, C. Olson, S. Prager, N. Sauthoff, J. Sethian, J. Sheffield, and S. Zinkle, J. Fusion Energy0164-0313 21, 61 (2002).
http://dx.doi.org/10.1023/A:1025038002187
42.
42.B. Badger, S. I. Abdel-Khalik, H. Attaya, R. L. Engelstad, G. L. Kulcinski, J. H. Liang, E. G. Lovell, G. A. Moses, Z. Musicki, R. R. Peterson, M. E. Sawan, I. N. Sviatoslavsky, L. J. Wittenberg, S. Skupsky, R. McCrory, P. McKenty, and C. Verdon, “SIRIUS-M: A symmetric illumination, inertially confined direct drive materials test facility. Final report,” No. UWFDM-756, University of Wisconsin, Madison (1988), see http://fti.neep.wisc.edu/Research/RX/SIRIUS-M.html
43.
43.M. Sawan and M. Abdou, Fusion Eng. Des.0920-379681, 1131 (2006).
44.
44.R. Raffray, “Overview of chamber/blanket work,” High Average Power Laser Workshop, Livermore, CA, June 2005, Vol. 12, see http://aries.ucsd.edu/HAPL/MEETINGS/0506-HAPL/program.html
http://aip.metastore.ingenta.com/content/aip/journal/pop/13/5/10.1063/1.2198796
Loading
/content/aip/journal/pop/13/5/10.1063/1.2198796
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/13/5/10.1063/1.2198796
2006-05-26
2015-06-02

Abstract

An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a “Fusion Test Facility” that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/13/5/1.2198796.html;jsessionid=yddlg19nqfzu.x-aip-live-03?itemId=/content/aip/journal/pop/13/5/10.1063/1.2198796&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pathway to a lower cost high repetition rate ignition facilitya)
http://aip.metastore.ingenta.com/content/aip/journal/pop/13/5/10.1063/1.2198796
10.1063/1.2198796
SEARCH_EXPAND_ITEM