1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/13/6/10.1063/1.2193528
1.
1.G. A. Mourou, C. P. J. Barty, and M. D. Perry, Phys. Today0031-9228 51(1), 22 (1998).
http://dx.doi.org/10.1063/1.882324
2.
2.D. Umstadler, J. Phys. D0022-3727 36, R151 (2003).
http://dx.doi.org/10.1088/0022-3727/36/8/202
3.
3.Superstrong Fields in Plasmas, AIP Conf. Proc. No. 611, edited by M. Lontano et al. (AIP, New York, 2002).
4.
4.V. Malka, in AIP Conf. Proc. No. 611, edited by M. Lontano et al. (AIP, New York, 2002), p. 303;
4.A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett.0031-9007 79, 2686 (1997);
http://dx.doi.org/10.1103/PhysRevLett.79.2686
4.E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci.0093-3813 24, 252 (1996);
http://dx.doi.org/10.1109/27.509991
4.P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. Lett.0031-9007 64, 2011 (1990);
http://dx.doi.org/10.1103/PhysRevLett.64.2011
4.T. Tajima and J. M. Dawson, Phys. Rev. Lett.0031-9007 43, 267 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
5.
5.M. S. Hussein, M. P. Pato, and A. K. Kerman, Phys. Rev. A1050-2947 46, 3562 (1992);
http://dx.doi.org/10.1103/PhysRevA.46.3562
5.M. S. Hussein and M. P. Pato, Phys. Rev. Lett.0031-9007 68, 1136 (1992);
http://dx.doi.org/10.1103/PhysRevLett.68.1136
5.S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi, Phys. Rev. Lett.0031-9007 66, 2072 (1991);
http://dx.doi.org/10.1103/PhysRevLett.66.2072
5.J. G. Woodworth, M. N. Kreisler, and A. K. Kerman, The Future of Accelerator Physics, edited by T. Tajima (AIP, New York, 1996), p. 378.
6.
6.L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Pergamon, London, 1975);
6.T. Boyd and J. Sanderson, Plasma Dynamics (Barnes and Noble, New York, 1969).
7.
7.E. Liang, K. Nishimura, H. Li, and S. P. Gary, Phys. Rev. Lett.0031-9007 90, 085001 (2003);
http://dx.doi.org/10.1103/PhysRevLett.90.085001
7.E. Liang and K. Nishimura, Phys. Rev. Lett.0031-9007 92, 175005 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.175005
7.K. Nishimura and E. Liang, Phys. Plasmas1070-664X 11, 4753 (2004);
http://dx.doi.org/10.1063/1.1791211
7.K. Nishimura, E. Liang, and S. P. Gary, Phys. Plasmas1070-664X 10, 4559 (2003).
http://dx.doi.org/10.1063/1.1611882
8.
8.P. Kaw and J. Dawson, Phys. Fluids0031-9171 13, 472 (1970).
http://dx.doi.org/10.1063/1.1692942
9.
9.A. B. Langdon and B. F. Lasinski, Methods in Computation Physics, edited by J. Killeen et al. (Academic, New York, 1976), Vol. 16, p. 327;
9.C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (IOP, Bristol, UK, 1991).
10.
10.W. L. Kruer, E. J. Valeo, and K. G. Estabrook, Phys. Rev. Lett.0031-9007 35, 1076 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.1076
11.
11.W. L. Kruer and K. G. Estabrook, Phys. Fluids0031-9171 28, 430 (1985).
http://dx.doi.org/10.1063/1.865171
12.
12.S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett.0031-9007 69, 1383 (1992);
http://dx.doi.org/10.1103/PhysRevLett.69.1383
12.C. Gahn et al., Phys. Rev. Lett.0031-9007 83, 4772 (1999);
http://dx.doi.org/10.1103/PhysRevLett.83.4772
12.P. X. Wang et al., Appl. Phys. Lett.0003-6951 78, 2253 (2001);
http://dx.doi.org/10.1063/1.1359486
12.Z. M. Sheng, K. Mima, J. Zhang, and J. Meyer-ter-Vehn, Phys. Rev. E1063-651X 69, 016407 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.016407
13.
13.T. E. Cowan et al., Laser Part. Beams0263-0346 17, 773 (1999);
http://dx.doi.org/10.1017/S0263034699174238
13.T. E. Cowan et al., Phys. Rev. Lett.0031-9007 84, 903 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.903
14.
14.E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett.0031-9007 81, 4887 (1998);
http://dx.doi.org/10.1103/PhysRevLett.81.4887
14.B. Shen and J. Meyer-ter-Vehn, Phys. Rev. E1063-651X 65, 016405 (2001).
http://dx.doi.org/10.1103/PhysRevE.65.016405
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/pop/13/6/10.1063/1.2193528
Loading
/content/aip/journal/pop/13/6/10.1063/1.2193528
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/13/6/10.1063/1.2193528
2006-06-23
2014-07-31

Abstract

Particle-in-cell(PIC) simulation results of sustained acceleration of electron-positron plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced forces. For laser and intensity, the maximum energy exceeds GeV in a picosecond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/13/6/1.2193528.html;jsessionid=17fu4qrpm2j9p.x-aip-live-02?itemId=/content/aip/journal/pop/13/6/10.1063/1.2193528&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses
http://aip.metastore.ingenta.com/content/aip/journal/pop/13/6/10.1063/1.2193528
10.1063/1.2193528
SEARCH_EXPAND_ITEM