1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
/content/aip/journal/pop/14/5/10.1063/1.2671844
1.
1.J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature (London)0028-0836 239, 139 (1972).
http://dx.doi.org/10.1038/239139a0
2.
2.W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J. M. Soures, Nucl. Fusion0029-5515 41, 567 (2001).
http://dx.doi.org/10.1088/0029-5515/41/5/309
3.
3.P. W. McKenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, Phys. Plasmas1070-664X 8, 2315 (2001).
http://dx.doi.org/10.1063/1.1350571
4.
4.J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998);
4.J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas1070-664X 11, 339 (2004).
http://dx.doi.org/10.1063/1.1578638
5.
5.S. W. Haan, M. C. Herrmann, P. A. Amendt et al., Fusion Sci. Technol.1536-1055 49, 553 (2006);
5.S. W. Haan, M. C. Herrmann, T. R. Dittrich et al., Phys. Plasmas1070-664X 12, 056316 (2005);
http://dx.doi.org/10.1063/1.1885003
5.S. W. Haan, P. A. Amendt, T. R. Dittrich et al., Nucl. Fusion0029-5515 44, S171 (2004).
http://dx.doi.org/10.1088/0029-5515/44/12/S06
6.
6.S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Clarendon Press, Oxford, 2004).
7.
7.T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun.0030-4018 133, 495 (1997).
http://dx.doi.org/10.1016/S0030-4018(96)00325-2
8.
8.C. Stoeckl, C. Chiritescu, J. A. Delettrez et al., Phys. Plasmas1070-664X 9, 2195 (2002).
http://dx.doi.org/10.1063/1.1458586
9.
9.T. C. Sangster, J. A. Delettrez, R. Epstein et al., Phys. Plasmas1070-664X 10, 1937 (2003).
http://dx.doi.org/10.1063/1.1565116
10.
10.P. W. McKenty, T. C. Sangster, M. Alexander et al., Phys. Plasmas1070-664X 11, 2790 (2004).
http://dx.doi.org/10.1063/1.1692106
11.
11.F. J. Marshall, R. S. Craxton, J. A. Delettrez et al., Phys. Plasmas1070-664X 12, 056302 (2005).
http://dx.doi.org/10.1063/1.1873832
12.
12.J. D. Sethian, M. Friedman, R. H. Lehmberg et al., Nucl. Fusion0029-5515 43, 1693 (2003);
http://dx.doi.org/10.1088/0029-5515/43/12/015
12.J. D. Lindl, B. A. Hammel, B. G. Logan, D. D. Meyerhofer, S. A. Payne, and J. D. Sethian, Plasma Phys. Controlled Fusion0741-3335 45, A217 (2003);
http://dx.doi.org/10.1088/0741-3335/45/12A/015
12.R. L. McCrory, S. P. Regan, S. J. Loucks et al., Nucl. Fusion0029-5515 45, S283 (2005).
http://dx.doi.org/10.1088/0029-5515/45/10/S24
13.
13.V. A. Smalyuk, V. N. Goncharov, J. A. Delettrez, F. J. Marshall, D. D. Meyerhofer, S. P. Regan, and B. Yaakobi, Phys. Rev. Lett.0031-9007 87, 155002 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.155002
14.
14.R. Betti, V. Lobatchev, and R. L. McCrory, Phys. Rev. Lett.0031-9007 81, 5560 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5560
15.
15.S. P. Regan, J. A. Marozas, R. S. Craxton et al., J. Opt. Soc. Am. B0740-3224 22, 998 (2005).
http://dx.doi.org/10.1364/JOSAB.22.000998
16.
16.S. H. Glenzer, L. J. Suter, R. L. Berger et al., Phys. Plasmas1070-664X 7, 2585 (2000).
http://dx.doi.org/10.1063/1.874100
17.
17.T. M. Henderson and R. R. Johnson, Appl. Phys. Lett.0003-6951 31, 18 (1977).
http://dx.doi.org/10.1063/1.89483
18.
18.J. R. Miller, in Advances in Cryogenic Engineering, edited by K. D. Timmerhaus (Plenum Press, New York, 1978), Vol. 23, p. 669.
19.
19.D. L. Musinski, T. M. Henderson, T. R. Pattinson, and J. A. Tarvin, Appl. Phys. Lett.0003-6951 34, 300 (1979).
http://dx.doi.org/10.1063/1.90767
20.
20.F. J. Marshall, S. A. Letzring, C. P. Verdon et al., Phys. Rev. A1050-2947 40, 2547 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.2547
21.
21.R. L. McCrory, J. M. Soures, C. P. Verdon et al., Nature (London)0028-0836 335, 225 (1988).
http://dx.doi.org/10.1038/335225a0
22.
22.J. K. Hoffer and L. R. Foreman, Phys. Rev. Lett.0031-9007 60, 1310 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1310
23.
23.A. J. Martin, KMS Annual Technical Report (KMS Fusion, Inc., Ann Arbor, MI (1985), p. 99.
24.
24.A. J. Martin, R. J. Simms, and R. B. Jacobs, J. Vac. Sci. Technol. A0734-2101 6, 1885 (1988).
http://dx.doi.org/10.1116/1.575234
25.
25.G. W. Collins, D. N. Bittner, E. Monsler, S. Letts, E. R. Mapoles, and T. P. Bernat, J. Vac. Sci. Technol. A0734-2101 14, 2897 (1996).
http://dx.doi.org/10.1116/1.580241
26.
26.D. R. Harding, D. D. Meyerhofer, S. J. Loucks et al., Phys. Plasmas1070-664X 13, 056316 (2006).
http://dx.doi.org/10.1063/1.2192468
27.
27.M. J. Bonino, M.S. thesis, University of Rochester (2003).
28.
28.J. D. Moody, B. J. Kozioziemski, R. L. London et al., J. Phys. IV1155-4339 133, 863 (2006).
http://dx.doi.org/10.1051/jp4:2006133174
29.
29.J. Edwards, M. Marinak, T. Dittrich, S. Haan, J. Sanchez, J. Klingmann, and J. Moody, Phys. Plasmas1070-664X 12, 056318 (2005).
http://dx.doi.org/10.1063/1.1914809
30.
30.M. Martin, C. Gauvin, A. Choux, P. Baclet, and G. Pascal, Fusion Sci. Technol.1536-1055 49, 600 (2006).
31.
31.J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. MacKinnion, J. D. Sater, D. N. Bittner, and Y. Lee, Fusion Technol.0748-1896 38, 123 (2000).
32.
32.D. H. Edgell, W. Seka, R. S. Craxton, L. M. Elasky, D. R. Harding, R. L. Keck, and M. D. Wittman, Fusion Sci. Technol.1536-1055 49, 616 (2006).
33.
33.D. S. Montgomery, A. Nobile, and P. J. Walsh, Rev. Sci. Instrum.0034-6748 75, 3986 (2004);
http://dx.doi.org/10.1063/1.1790054
33.B. J. Kozioziemski, J. A. Koch, A. Barty, H. E. Martz, Jr., W.-K. Lee, and K. Fezzaa, J. Appl. Phys.0021-8979 97, 063103 (2005).
http://dx.doi.org/10.1063/1.1862764
34.
34.S. Pollaine and S. Hatchett, Nucl. Fusion0029-5515 44, 117 (2004).
http://dx.doi.org/10.1088/0029-5515/44/1/014
35.
35.D. H. Edgell, W. Seka, R. S. Craxton, L. M. Elasky, D. R. Harding, R. L. Keck, L. D. Lund, and M. D. Wittman, J. Phys. IV1155-4339 133, 903 (2006);
http://dx.doi.org/10.1051/jp4:2006133182
35.D. S. Montgomery, D. C. Gautier, B. J. Kozioziemski, J. D. Moody, S. C. Evans, J. Pipes, J. D. Sater, D. Stefanescu, and P. J. Walsh, J. Phys. IV1155-4339 133, 869 (2006).
http://dx.doi.org/10.1051/jp4:2006133175
36.
36.F. Gillot, A. Choux, L. Jeannot, G. Pascal, and P. Baclet, Fusion Sci. Technol.1536-1055 49, 626 (2006).
37.
37.R. L. McCrory, J. M. Soures, J. P. Knauer et al., Laser Part. Beams0263-0346 11, 299 (1993).
38.
38.T. P. Bernat, H. Huang, J. D. Kilkenny et al., J. Phys. IV1155-4339 133, 857 (2006).
http://dx.doi.org/10.1051/jp4:2006133173
39.
39.J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L. Henke, Phys. Rev. A1050-2947 36, 3926 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.3926
40.
40.P. B. Radha, J. Delettrez, R. Epstein et al., Phys. Plasmas1070-664X 9, 2208 (2002).
http://dx.doi.org/10.1063/1.1459452
41.
41.F. H. Séguin, J. A. Frenje, C. K. Li et al., Rev. Sci. Instrum.0034-6748 74, 975 (2003).
http://dx.doi.org/10.1063/1.1518141
42.
42.B. Yaakobi, R. Epstein, and F. J. Marshall, Phys. Rev. A1050-2947 44, 8429 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.8429
43.
43.V. A. Smalyuk, P. B. Radha, J. A. Delettrez et al., Phys. Rev. Lett.0031-9007 90, 135002 (2003);
http://dx.doi.org/10.1103/PhysRevLett.90.135002
43.J. A. Frenje, C. K. Li, F. H. Séguin et al., Phys. Plasmas1070-664X 11, 2798 (2003).
http://dx.doi.org/10.1063/1.1695359
44.
44.F. J. Marshall, J. A. Delettrez, R. Epstein, and B. Yaakobi, Phys. Rev. E1063-651X 49, 4381 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.4381
http://aip.metastore.ingenta.com/content/aip/journal/pop/14/5/10.1063/1.2671844
Loading
/content/aip/journal/pop/14/5/10.1063/1.2671844
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/14/5/10.1063/1.2671844
2007-04-26
2015-07-28

Abstract

Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) [W. J. Hogan et al., Nucl. Fusion41, 567 (2001)] are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIF. At the University of Rochester’s Laboratory for Laser Energetics (LLE), the inner-ice surface of cryogenic DT capsules formed using -layering meets the surface-smoothness requirement for ignition ( rms in all modes). Prototype x-ray-drive cryogenic targets being produced at the Lawrence Livermore National Laboratory are nearing the tolerances required for ignition on the NIF. At LLE, these cryogenic DT (and ) capsules are being imploded on the direct-drive 60-beam, 30-kJ UV OMEGA laser [T. R. Boehly et al., Opt. Commun.133, 495 (1997)]. The designs of these cryogenic targets for OMEGA are energy scaled from the baseline direct-drive-ignition design for the NIF. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/14/5/1.2671844.html;jsessionid=126jme17629qa.x-aip-live-03?itemId=/content/aip/journal/pop/14/5/10.1063/1.2671844&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cryogenic DT and D2 targets for inertial confinement fusiona)
http://aip.metastore.ingenta.com/content/aip/journal/pop/14/5/10.1063/1.2671844
10.1063/1.2671844
SEARCH_EXPAND_ITEM