The algorithms, implementation details, and applications of VPIC, a state-of-the-art first principles 3D electromagnetic relativistic kinetic particle-in-cell code, are discussed. Unlike most codes, VPIC is designed to minimize data motion, as, due to physical limitations (including the speed of light!), moving data between and even within modern microprocessors is more time consuming than performing computations. As a result, VPIC has achieved unprecedented levels of performance. For example, VPIC can perform 0.17 billion cold particles pushed and charge conserving accumulated per second per processor on IBM’s Cell microprocessor—equivalent to sustaining Los Alamos’s planned Roadrunner supercomputer at 0.56 petaflop (quadrillion floating point operations per second). VPIC has enabled previously intractable simulations in numerous areas of plasma physics, including magnetic reconnection and laser plasma interactions; next generation supercomputers like Roadrunner will enable further advances.

1.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
2.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Institute of Physics
,
Philadelphia
,
1988
).
3.
K. J.
Bowers
,
E.
Chow
,
H.
Xu
,
R. O.
Dror
,
M. P.
Eastwood
,
B. A.
Gregersen
,
J. L.
Klepeis
,
I.
Kolossvary
,
M. A.
Moraes
,
F. D.
Sacerdoti
,
J. K.
Salmon
,
Y.
Shan
, and
D. E.
Shaw
, in
SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
(
ACM
,
New York
,
2006
).
4.
T. J. T.
Kwan
and
C. M.
Snell
,
Lecture Notes in Physics
(
Springer-Verlag
,
Berlin
,
1985
), Vol.
240
.
5.
J. P.
Verboncoeur
,
A. B.
Langdon
, and
N. T.
Gladd
,
Comput. Phys. Commun.
87
,
199
(
1995
).
6.
J. W.
Eastwood
,
W.
Arter
,
N. J.
Brealey
, and
R. W.
Hockney
,
Comput. Phys. Commun.
87
,
155
(
1995
).
7.
M. E.
Jones
,
D.
Winske
,
S. R.
Goldman
,
R. A.
Kopp
,
V. G.
Rogatchev
,
S. A.
Bel’kov
,
P. D.
Gasparyan
,
G. V.
Dolgoleva
,
N. V.
Zhidkov
,
N. V.
Ivanov
,
Y. K.
Kochubej
,
G. F.
Nasyrov
,
V. A.
Pavlovskii
,
V. V.
Smirnov
, and
Y. A.
Romanov
,
Phys. Plasmas
3
,
1096
(
1996
).
8.
J. D.
Blahovec
,
L. A.
Bowers
,
J. W.
Luginsland
,
G. E.
Sasser
, and
J. J.
Watrous
,
IEEE Trans. Plasma Sci.
28
,
821
(
2000
).
9.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
10.
R. I.
McLachlan
and
G. R. W.
Quispel
, in
Acta Numerica
(
Cambridge University Press
,
Cambridge
,
2002
), Vol.
11
, pp.
341
434
.
11.
R. L.
Higdon
,
Math. Comput.
47
,
437
(
1986
).
12.
J. P.
Boris
, in
Proceedings of the 4th Conference on Numerical Simulation of Plasmas
, edited by
J. P.
Boris
and
R. A.
Shanny
(
Naval Research Laboratory
,
Washington, D.C.
,
1970
), pp.
3
67
.
13.
J.
Villasenor
and
O.
Buneman
,
Comput. Phys. Commun.
69
,
306
(
1992
).
14.
15.
K. S.
Yee
,
IEEE Trans. Antennas Propag.
14
,
302
(
1966
).
16.
R. A.
Lippert
,
K. J.
Bowers
,
B. A.
Gregersen
,
R. O.
Dror
,
M. P.
Eastwood
,
J. L.
Klepeis
,
I.
Kolossvary
, and
D. E.
Shaw
,
J. Chem. Phys.
126
,
046101
(
2007
).
17.
K. J.
Bowers
,
J. Comput. Phys.
173
,
393
(
2001
).
18.
19.
J. A.
Kahle
,
M. N.
Day
,
H. P.
Hofstee
,
C. R.
Johns
,
T. R.
Maeurer
, and
D.
Shippy
,
IBM J. Res. Dev.
49
,
589
(
2005
).
20.
L.
Yin
,
W.
Daughton
,
H.
Karimabadi
,
B. J.
Albright
,
K. J.
Bowers
, and
J.
Margulies
, “
Fully kinetic 3D simulations of collisionless reconnection in large-scale pair plasmas
,” Phys. Rev. Lett. (to be published).
21.
K. J.
Bowers
and
H.
Li
,
Phys. Rev. Lett.
98
,
035002
(
2007
).
22.
L.
Yin
,
B. J.
Albright
,
K. J.
Bowers
,
W.
Daughton
, and
H. A.
Rose
,
Phys. Rev. Lett.
99
,
265004
(
2007
).
23.
L.
Yin
,
B. J.
Albright
,
B. M.
Hegelich
,
K. J.
Bowers
,
K. A.
Flippo
,
T. J. T.
Kwan
, and
J. C.
Fernández
,
Phys. Plasmas
14
,
056706
(
2007
).
24.
B. J.
Albright
,
L.
Yin
,
K. J.
Bowers
,
B. M.
Hegelich
,
K. A.
Flippo
,
T. J. T.
Kwan
, and
J. C.
Fernández
,
Phys. Plasmas
14
,
094502
(
2007
).
You do not currently have access to this content.