1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Perspectives on high-energy-density physicsa)
a)Paper XR 2, Bull. Am. Phys. Soc. 53, 319 (2008).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/16/5/10.1063/1.3078101
1.
1.I. Langmuir, Proc. Natl. Acad. Sci. U.S.A. 14, 627 (1928).
http://dx.doi.org/10.1073/pnas.14.8.627
2.
2.L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).
http://dx.doi.org/10.1103/PhysRev.33.195
3.
3.A. S. Bishop, Project Sherwood: The U. S. Program in Controlled Fusion (Kessinger, Whitefish, 2007).
4.
4.A. S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1988).
5.
5.S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1958).
6.
6.M. Schwarzschild, The Structure and Evolution of Stars (Dover, New York, 1977).
7.
7.R. Rhodes, The Making of the Atomic Bomb (Simon & Schuster, New York, 1995).
8.
8.Y. B. Zeldovich and Y. P. Razier, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).
9.
9.J. Nuckolls, A. Thiessen, L. Wood, and G. Zimmerman, Nature (London) 239, 139 (1972).
http://dx.doi.org/10.1038/239139a0
10.
10.D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
11.
11.P. Caldirola and H. Knoepfel, International School of Physics Enrico Fermi (Academic, New York, 1971), Vol. XLVIII, p. 418.
12.
12.Committee on High Energy Density Plasma Physics, Plasma Science Committee, National Research Council, High-Energy-Density Physics: The X-Games of Contemporary Science (National Academies, Washington, D.C., 2003).
13.
13.R. C. Davidson and National Task Force on High Energy Density Physics, Frontiers for Discovery in High-Energy-Density Physics (Office of Science and Technology Policy, Washington, DC, 2004).
14.
14.R. P. Drake, High Energy Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics (Springer, New York, 2006).
15.
15.D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and M. Wood-Vasey, Astrophys. J. 518, 821 (1999).
http://dx.doi.org/10.1086/307293
16.
16.D. D. Ryutov, R. P. Drake, and B. A. Remington, Astrophys. J., Suppl. Ser. 127, 465 (2000).
http://dx.doi.org/10.1086/313320
17.
17.D. D. Ryutov, B. A. Remington, H. F. Robey, and R. P. Drake, Phys. Plasmas 8, 1804 (2001).
http://dx.doi.org/10.1063/1.1344562
18.
18.J. D. Lindl, Phys. Plasmas 2, 3933 (1995).
http://dx.doi.org/10.1063/1.871025
19.
19.M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and W. W. Anderson, Phys. Rev. Lett. 87, 225501 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.225501
20.
20.J. F. Hansen, H. F. Robey, R. I. Klein, and A. R. Miles, Phys. Plasmas 14, 056505 (2007).
http://dx.doi.org/10.1063/1.2714024
21.
21.R. P. Drake, J. J. Carroll III, T. B. Smith, P. Keiter, S. G. Glendinning, O. Hurricane, K. Estabrook, D. D. Ryutov, B. A. Remington, R. J. Wallace, E. Michael, and R. McCray, Phys. Plasmas 7, 2142 (2000).
http://dx.doi.org/10.1063/1.874034
22.
22.A. Poludnenko, K. K. Dannenberg, R. P. Drake, A. Frank, J. Knauer, D. D. Meyerhofer, M. Furnish, and J. Asay, Astrophys. J. 604, 213 (2004).
http://dx.doi.org/10.1086/381792
23.
23.J. Edwards, K. T. Lorenz, B. A. Remington, S. Pollaine, J. Colvin, D. Braun, B. F. Lasinski, D. Reisman, J. M. McNaney, J. A. Greenough, R. Wallace, H. Louis,  and D. Kalantar, Phys. Rev. Lett. 92, 075002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.075002
24.
24.A. D. Edens, T. Ditmire, J. F. Hansen, M. J. Edwards, R. G. Adams, P. K. Rambo, L. Ruggles, I. C. Smith, and J. L. Porter, Phys. Plasmas 11, 4968 (2004).
http://dx.doi.org/10.1063/1.1773553
25.
25.A. D. Edens, T. Ditmire, J. F. Hansen, M. J. Edwards, R. G. Adams, P. K. Rambo, L. Ruggles, I. C. Smith, and J. L. Porter, Phys. Rev. Lett. 95, 244503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.244503
26.
26.J. F. Hansen, M. J. Edwards, D. H. Froula, G. Gregori, A. D. Edens, and T. Ditmire, Phys. Plasmas 13, 022105 (2006).
http://dx.doi.org/10.1063/1.2168157
27.
27.L. Boireau, C. Clique, and S. Bouquet, Proceedings of the Gases, Inertial Fusion Science and Applications Conference, Monterey, CA (American Nuclear Society, New York, 2003), p. 966.
28.
28.S. Bouquet, C. Stehlé, M. Koenig, J. P. - Chièze, A. Benuzzi-Mounaix, D. Batani, S. Leygnac, X. Fleury, H. Merdji, C. Michaut, F. Thais, N. Grandjouan, T. Hall, E. Henry, V. Malka, and J.-P. J. Lafon, Phys. Rev. Lett. 92, 225001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.225001
29.
29.X. Fleury, S. Bouquet, C. Stehlé, M. Koenig, D. Batani, A. Benuzzi-Mounaix, J. P. - Chièze, N. Grandjouan, J. Grenier, T. Hall, E. Henry, J. P. - Lafon, S. Leygnac, V. Malka, B. Marchet, H. Merdji, C. Michaut, and F. Thais, Laser Part. Beams 20, 263 (2002).
http://dx.doi.org/10.1017/S0263034602202165
30.
30.M. Koenig, A. Benuzzi-Mounaix, N. Grandjouan, V. Malka, S. Bouquet, X. Fleury, B. Marchet, C. Stehlé, S. Leygnac, C. Michaut, J. P. Chièze, D. Batani, E. Henry, and T. Hall, AIP Conf. Proc.620, 1367 (2002).
http://dx.doi.org/10.1063/1.1483793
31.
31.M. Koenig, T. Vinci, A. Benuzzi-Mounaix, N. Ozaki, A. Ravasio, M. Rabec le Glohaec, L. Boireau, C. Michaut, S. Bouquet, S. Atzeni, A. Schiavi, O. Peyrusse, and D. Batani, Phys. Plasmas 13, 056504 (2006).
http://dx.doi.org/10.1063/1.2177637
32.
32.P. A. Keiter, R. P. Drake, T. S. Perry, H. F. Robey, B. A. Remington, C. A. Iglesias, R. J. Wallace, and J. Knauer, Phys. Rev. Lett. 89, 165003 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.165003
33.
33.A. B. Reighard, Ph.D. thesis, University of Michigan, 2007.
34.
34.A. B. Reighard and R. P. Drake, Astrophys. Space Sci. 307, 121 (2007).
http://dx.doi.org/10.1007/s10509-006-9237-2
35.
35.A. B. Reighard, R. P. Drake, K. K. Danneberg, D. J. Kremer, T. S. Perry, B. A. Remington, R. J. Wallace, D. D. Ryutov, J. Greenough, J. Knauer, T. Boehly, S. Bouquet, A. Calder, R. Rosner, B. Fryxell, D. Arnett, M. Koenig, and N. Grandjouan, Proceedings of the Inertial Fusion and Science Applications, Monterey, CA (American Nuclear Society, New York, 2003), p. 950.
36.
36.A. B. Reighard, R. P. Drake, K. K. Dannenberg, D. J. Kremer, E. C. Harding, D. R. Leibrandt, S. G. Glendinning, T. S. Perry, B. A. Remington, J. Greenough, J. Knauer, T. Boehly, S. Bouquet, L. Boireau, M. Koenig, and T. Vinci, Phys. Plasmas 13, 082901 (2006).
http://dx.doi.org/10.1063/1.2222294
37.
37.A. B. Reighard, R. P. Drake, T. Donjakowski, M. J. Grosskopf, K. K. Dannenberg, D. Froula, S. Glenzer, J. S. Ross, and J. Edwards, Rev. Sci. Instrum. 77, 10E504 (2006).
http://dx.doi.org/10.1063/1.2220069
38.
38.A. B. Reighard, R. P. Drake, J. E. Mucino, J. P. Knauer, and M. Busquet, Phys. Plasmas 14, 056504 (2007).
http://dx.doi.org/10.1063/1.2714023
39.
39.T. J. Nash, M. S. Derzon, G. A. Chandler, R. Leeper, D. Fehl, J. Lash, C. Ruiz, G. Cooper, J. F. Seaman, J. McGurn, S. Lazier, J. Torres, D. Jobe, T. Gilliland, M. Hurst, R. Mock, P. Ryan, D. Nielson, J. Armijo, J. McKenney, R. Hawn, D. Hebron, J. J. MacFarlane, D. Petersen, R. Bowers, W. Matuska, and D. D. Ryutov, Phys. Plasmas 6, 2023 (1999).
http://dx.doi.org/10.1063/1.873457
40.
40.J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 (1994).
http://dx.doi.org/10.1016/0022-4073(94)90078-7
41.
41.S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, Opt. Lett. 29, 2837 (2004).
http://dx.doi.org/10.1364/OL.29.002837
42.
42.C. Joshi, B. Blue, C. E. Clayton, E. Dodd, C. Huang, K. A. Marsh, W. B. Mori, S. Wang, M. J. Hogan, C. O'Connell, R. Siemann, D. Watz, P. Muggli, T. Katsouleas, and S. Lee, Phys. Plasmas9, 1845 (2001).
http://dx.doi.org/10.1063/1.1455003
43.
43.E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4887
44.
44.T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
45.
45.S. Y. Cai and A. Bhattacharjee, Phys. Rev. A 42, 4853 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.4853
46.
46.C. E. Clayton, M. J. Everett, A. Lal, D. Gordon, K. A. Marsh, and C. Joshi, Phys. Plasmas 1, 1753 (1994).
http://dx.doi.org/10.1063/1.870679
47.
47.E. Esarey, A. Ting, and P. Sprangle, Appl. Phys. Lett. 53, 1266 (1988).
http://dx.doi.org/10.1063/1.99996
48.
48.P. Gibbon and A. R. Bell, Phys. Rev. Lett. 61, 1599 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1599
49.
49.C. M. Tang, P. Sprangle, and R. N. Sudan, Appl. Phys. Lett. 45, 375 (1984).
http://dx.doi.org/10.1063/1.95225
50.
50.F. Dorchies, F. Amiranoff, V. Malka, J. R. Marques, A. Modena, D. Bernard, F. Jacquet, P. Mine, B. Cros, G. Mathieussent, P. Mora, A. Solodov, J. Morillo, and Z. Najmudin, Phys. Plasmas 6, 2903 (1999).
http://dx.doi.org/10.1063/1.873248
51.
51.A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B: Lasers Opt. 74, 355 (2002).
http://dx.doi.org/10.1007/s003400200795
52.
52.C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature (London) 431, 538 (2004).
http://dx.doi.org/10.1038/nature02900
53.
53.J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, Nature (London) 431, 541 (2004).
http://dx.doi.org/10.1038/nature02963
54.
54.S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, Nature (London) 431, 535 (2004).
http://dx.doi.org/10.1038/nature02939
55.
55.I. Blumenfeld, C. E. Clayton, F. J. Decker, M. J. Hogan, C. K. Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, E. Oz, R. H. Siemann, D. Walz, and M. M. Zhou, Nature (London) 445, 741 (2007).
http://dx.doi.org/10.1038/nature05538
56.
56.W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/pop/16/5/10.1063/1.3078101
Loading
/content/aip/journal/pop/16/5/10.1063/1.3078101
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/16/5/10.1063/1.3078101
2009-03-06
2014-10-23

Abstract

Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very nontraditional plasmas. High-energy-density (HED) plasmas are often examples, variously involving strong Coulomb interactions and particles per Debye sphere, dominant radiation effects, and strongly relativistic or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of “plasma.” Here the specific ways in which HED plasmas differ from traditional plasmas are discussed. This is first done by comparison of important physical quantities across the parameter regime accessible by existing or contemplated experimental facilities. A specific discussion of some illustrative cases follows, including strongly radiative shocks and the production of relativistic, quasimonoenergetic beams of accelerated electrons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/16/5/1.3078101.html;jsessionid=offn8e5i5aru.x-aip-live-06?itemId=/content/aip/journal/pop/16/5/10.1063/1.3078101&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspectives on high-energy-density physicsa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/16/5/10.1063/1.3078101
10.1063/1.3078101
SEARCH_EXPAND_ITEM