1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa)
a) Paper PT2 1, Bull. Am. Phys. Soc. 53, 199 (2008).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/16/5/10.1063/1.3089604
1.
1.A. S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Cambridge, 1926).
2.
2.F. Delahaye and M. Pinsonneault, Astrophys. J. 625, 563 (2005).
http://dx.doi.org/10.1086/429583
3.
3.D. Mihalas, Stellar Atmospheres (W.H. Freeman, San Fransisco, 1970).
4.
4.J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, L85 (2005);
http://dx.doi.org/10.1086/428929
4.J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker, and R. K. Ulrich, Rev. Mod. Phys. 54, 767 (1982);
http://dx.doi.org/10.1103/RevModPhys.54.767
5.
5.S. Basu and H. M. Antia, Phys. Rep. 457, 217 (2008).
http://dx.doi.org/10.1016/j.physrep.2007.12.002
6.
6.M. Asplund, Annu. Rev. Astron. Astrophys. 43, 481 (2005) (and references therein).
http://dx.doi.org/10.1146/annurev.astro.42.053102.134001
7.
7.J. N. Bahcall, A. M. Serenelli, and M. Pinsonneault, Astrophys. J. 614, 464 (2004).
http://dx.doi.org/10.1086/423027
8.
8.S. Turck-Chieze, S. Couvidat, L. Piau, J. Ferguson, P. Lambert, J. Ballot, R. A. Garcıa, and P. Nghiem, Phys. Rev. Lett. 93, 211102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.211102
9.
9.H. M. Antia and S. Basu, Astrophys. J. 620, L129 (2005).
http://dx.doi.org/10.1086/428652
10.
10.S. Basu and H. M. Antia, Astrophys. J. 606, L85 (2004);
http://dx.doi.org/10.1086/421110
10.J. N. Bahcall, S. Basu, M. Pinsonneault, and A. M. Serenelli, Astrophys. J. 618, 1049 (2005).
http://dx.doi.org/10.1086/426070
11.
11.Ya. B. Zel’dolvich and Yu. P. Raizer, in Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, edited by W. D. Hayes and R. F. Probstein (Dover, Mineola, 1966).
12.
12.J. P. Apruzese, J. Davis, K. G. Whitney, J. W. Thornhill, P. C. Kepple, R. W. Clark, C. Deeney, C. A. Coverdale, and T. W. L. Sanford, Phys. Plasmas 9, 2411 (2002).
http://dx.doi.org/10.1063/1.1446038
13.
13.M. J. Seaton, Y. Yu, D. Mihalas, and A. K. Pradhan, Mon. Not. R. Astron. Soc. 266, 805 (1994);
13.M. J. Seaton, Mon. Not. R. Astron. Soc. 382, 245 (2007).
http://dx.doi.org/10.1111/j.1365-2966.2007.12345.x
14.
14.C. Mendoza, M. J. Seaton, P. Buerger, A. Bellorín, M. Meléndez, J. González, L. S. Rodríguez, F. Delahaye, E. Palacios, A. K. Pradhan, and C. J. Zeippen, Mon. Not. R. Astron. Soc. 378, 1031 (2007).
15.
15.D. C. Wilson, P. A. Bradley, N. M. Hoffman, F. J. Swenson, D. P. Smitherman, R. E. Chrien, R. W. Margevicius, D. J. Thoma, L. R. Foreman, J. K. Hoffer, S. R. Goldman, S. E. Caldwell, T. R. Dittrich, S. W. Haan, M. M. Marinak, S. M. Pollaine, and J. J. Sanchez, Phys. Plasmas 5, 1953 (1998);
http://dx.doi.org/10.1063/1.872865
15.S. W. Haan, M. C. Herrmann, T. R. Dittrich, A. J. Fetterman, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, G. L. Strobel, and L. J. Suter, Phys. Plasmas 12, 056316 (2005).
http://dx.doi.org/10.1063/1.1885003
16.
16.N. Grevesse and A. J. Sauval, Space Sci. Rev. 85, 161 (1998).
http://dx.doi.org/10.1023/A:1005161325181
17.
17.P. Renaudin, L. Lecherbourg, C. Blancard, P. Cosse, G. Faussurier, P. Audebert, S. Bastiani-Ceccotti, J. -P. Geindre, and R. Shepherd, AIP Conf. Proc. 926, 24 (2007).
http://dx.doi.org/10.1063/1.2768829
18.
18.J. J. MacFarlane, I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Mehlhorn, and R. B. Campbell, Inertial Fusion Science and Applications, edited by B. A. Hammel, D. D. Meyerhofer, J. Meyer-ter-Vehn, and H. Azechi (American Nuclear Society, La Grange Park, 2004), p. 457;
18.J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Phys. 3, 181 (2007).
19.
19.J. E. Bailey, G. A. Rochau, C. A. Iglesias, J. Abdallah, Jr., J. J. MacFarlane, I. Golovkin, P. Wang, R. C. Mancini, P. W. Lake, T. C. Moore, M. Bump, O. Garcia, and S. Mazevet, Phys. Rev. Lett. 99, 265002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.265002
20.
20.J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, J. C. Pain, F. Gilleron, C. Blancard, Ph. Cosse, G. Faussurier, G. A. Chandler, T. J. Nash, D. S. Nielsen, and P. W. Lake, Rev. Sci. Instrum. 79, 113104 (2008).
http://dx.doi.org/10.1063/1.3020710
21.
21.C. L. S. Lewis and J. McGlinchey, Opt. Commun. 53, 179 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90327-X
22.
22.T. S. Perry, S. J. Davidson, F. J. D. Serduke, D. R. Bach, C. C. Smith, J. M. Foster, R. J. Doyas, R. A. Ward, C. A. Iglesias, F. J. Rogers, J. Abdallah, Jr., R. E. Stewart, J. D. Kilkenny, and R. W. Lee, Phys. Rev. Lett. 67, 3784 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3784
23.
23.T. S. Perry, P. T. Springer, D. F. Fields, D. R. Bach, F. J. D. Serduke, C. A. Iglesias, F. J. Rogers, J. K. Nash, M. H. Chen, B. G. Wilson, W. H. Goldstein, B. Rozsynai, R. A. Ward, J. D. Kilkenny, R. Doyas, L. B. Da Silva, C. A. Back, R. Cauble, S. J. Davidson, J. M. Foster, C. C. Smith, A. Bar-Shalom, and R. W. Lee, Phys. Rev. E 54, 5617 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.5617
24.
24.H. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997).
25.
25.J. E. Bailey, G. A. Rochau, S. B. Hansen, C. A. Iglesias, J. J. MacFarlane, I. Golovkin, P. Wang, R. C. Mancini, C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J. C. Pain, “Evaluation of non-LTE effects on iron plasma transmission measurements at temperatures above 150 eV,” High Energy Density Phys. (to be submitted).
26.
26.S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, and S. J. Rose, Appl. Phys. Lett. 52, 847 (1988).
http://dx.doi.org/10.1063/1.99304
27.
27.J. M. Foster, D. J. Hoarty, C. C. Smith, P. A. Rosen, S. J. Davidson, S. J. Rose, T. S. Perry, and F. J. D. Serduke, Phys. Rev. Lett. 67, 3255 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3255
28.
28.J. Bruneau, C. Chenais-Popovics, D. Desenne, J. -C. Gauthier, J. -P. Geindre, M. Klapisch, J. -P. Le Breton, M. Louis-Jacquet, D. Naccache, and J. -P. Perrine, Phys. Rev. Lett. 65, 1435 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1435
29.
29.D. J. Hoarty, C. D. Bentley, B. J. B. Crowley, S. J. Davidson, S. G. Gales, P. Graham, J. W. O. Harris, C. A. Iglesias, S. F. James, and C. C. Smith, J. Quant. Spectrosc. Radiat. Transf. 99, 283 (2006);
http://dx.doi.org/10.1016/j.jqsrt.2005.05.022
29.D. J. Hoarty, J. W. O. Harris, P. Graham, S. J. Davidson, S. F. James, B. J. B. Crowley, E. L. Clark, C. C. Smith, and L. Upcraft, High Energy Density Phys. 3, 325 (2007).
30.
30.J. E. Bailey, P. Arnault, T. Blenski, G. Dejonghe, O. Peyrusse, J. J. MacFarlane, R. C. Mancini, M. E. Cuneo, D. S. Nielsen, and G. A. Rochau, J. Quant. Spectrosc. Radiat. Transf. 81, 31 (2003).
http://dx.doi.org/10.1016/S0022-4073(03)00050-5
31.
31.C. Chenais-Popovics, F. Gilleron, M. Fajardo, H. Merdji, T. Mißalla, J. C. Gauthier, P. Renaudin, S. Gary, J. Bruneau, F. Perrot, T. Blenski, W. Fölsner, and K. Eidmann, J. Quant. Spectrosc. Radiat. Transf. 65, 117 (2000).
http://dx.doi.org/10.1016/S0022-4073(99)00061-8
32.
32.C. Chenais-Popovics, H. Merdji, T. Mißalla, F. Gilleron, J. C. Gauthier, T. Blenski, F. Perrot, M. Klapisch, C. Bauche-Arnoult, J. Bauche, A. Bachelier, and K. Eidmann, Astrophys. J., Suppl. Ser. 127, 275 (2000).
http://dx.doi.org/10.1086/313354
33.
33.C. Chenais Popovics, M. Fajardo, F. Gilleron, U. Teubner, J. -C. Gauthier, C. Bauche-Arnoult, A. Bachelier, J. Bauche, T. Blenski, F. Thais, F. Perrot, A. Benuzzi, S. Turck-Chièze, J. -P. Chièze, F. Dorchies, U. Andiel, W. Foelsner, and K. Eidmann, Phys. Rev. E 65, 016413 (2001);
http://dx.doi.org/10.1103/PhysRevE.65.016413
33.C. Chenais-Popovics, M. Fajardo, F. Thais, F. Gilleron, J. C. Gauthier, K. Eidmann, W. Fölsner, T. Blenski, F. Perrot, C. Bauche-Arnoult, A. Bachelier, and J. Bauche, J. Quant. Spectrosc. Radiat. Transf. 71, 249 (2001);
http://dx.doi.org/10.1016/S0022-4073(01)00072-3
33.H. Merdji, T. Mißalla, T. Blenski, F. Perrot, J. C. Gauthier, K. Eidmann, and C. Chenais-Popovics, Phys. Rev. E 57, 1042 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.1042
34.
34.C. A. Back, T. S. Perry, D. R. Bach, B. G. Wilson, C. A. Iglesias, O. L. Landen, S. J. Davidson, and B. J. B. Crowley, J. Quant. Spectrosc. Radiat. Transf. 58, 415 (1997).
http://dx.doi.org/10.1016/S0022-4073(97)00049-6
35.
35.F. Thais, S. Bastiani, T. Blenski, C. Chenais-Popovics, K. Eidman, W. Fölsner, J. -C. Gauthier, F. Gilleron, and M. Poirier, J. Quant. Spectrosc. Radiat. Transf. 81, 473 (2003).
36.
36.P. Renaudin, C. Blancard, J. Bruneau, G. Faussurier, J. -E. Fuchs, and S. Gary, J. Quant. Spectrosc. Radiat. Transf. 99, 511 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2005.05.041
37.
37.L. Da Silva, B. J. MacGowan, D. R. Kania, B. A. Hammel, C. A. Back, E. Hsieh, R. Doyas, C. A. Iglesias, F. J. Rogers, and R. W. Lee, Phys. Rev. Lett. 69, 438 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.438
38.
38.P. T. Springer, D. J. Fields, B. G. Wilson, J. K. Nash, W. H. Goldstein, C. A. Iglesias, F. J. Rogers, J. K. Swenson, M. H. Chen, A. Bar-Shalom, and R. E. Stewart, Phys. Rev. Lett. 69, 3735 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3735
39.
39.G. Winhart, K. Eidmann, C. A. Iglesias, A. Bar-Shalom, E. Mínguez, A. Rickert, and S. J. Rose, J. Quant. Spectrosc. Radiat. Transf. 54, 437 (1995);
http://dx.doi.org/10.1016/0022-4073(95)00080-5
39.G. Winhart, K. Eidmann, C. A. Iglesias, and A. Bar-Shalom, Phys. Rev. E 53, R1332 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R1332
40.
40.P. T. Springer, K. L. Wong, C. A. Iglesias, J. H. Hammer, J. L. Porter, A. Toor, W. H. Goldstein, B. G. Wilson, F. J. Rogers, C. Deeney, D. S. Dearborn, C. Bruns, J. Emig, and R. E. Stewart, J. Quant. Spectrosc. Radiat. Transf. 58, 927 (1997).
http://dx.doi.org/10.1016/S0022-4073(97)00099-X
41.
41.C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).
http://dx.doi.org/10.1086/177381
42.
42.F. J. Rogers and C. A. Iglesias, Science 263, 50 (1994).
http://dx.doi.org/10.1126/science.263.5143.50
43.
43.M. K. Matzen, Phys. Plasmas 4, 1519 (1997);
http://dx.doi.org/10.1063/1.872323
43.V. P. Smirnov, Plasma Phys. Controlled Fusion 33, 1697 (1991);
http://dx.doi.org/10.1088/0741-3335/33/13/014
43.J. H. Brownell, R. L. Bowers, K. D. McLenthan, and D. L. Peterson, Phys. Plasmas 5, 2071 (1998).
http://dx.doi.org/10.1063/1.872879
44.
44.J. E. Bailey, G. A. Chandler, S. A. Slutz, G. R. Bennett, G. Cooper, J. S. Lash, S. Lazier, R. Lemke, T. J. Nash, D. S. Nielsen, T. C. Moore, C. L. Ruiz, D. G. Schroen, R. Smelser, J. Torres, and R. A. Vesey, Phys. Rev. Lett. 89, 095004 (2002);
http://dx.doi.org/10.1103/PhysRevLett.89.095004
44.J. E. Bailey, G. A. Chandler, R. C. Mancini, S. A. Slutz, G. A. Rochau, M. Bump, T. J. Buris-Mog, G. Cooper, G. Dunham, I. Golovkin, J. D. Kilkenny, P. W. Lake, R. J. Leeper, R. Lemke, J. J. MacFarlane, T. A. Mehlhorn, T. C. Moore, T. J. Nash, A. Nikroo, D. S. Nielsen, K. L. Peterson, C. L. Ruiz, D. G. Schroen, D. Steinman, and W. Varnum, Phys. Plasmas 13, 056301 (2006).
http://dx.doi.org/10.1063/1.2177640
45.
45.T. W. L. Sanford, T. J. Nash, R. C. Mock, J. P. Apruzese, and D. L. Peterson, Phys. Plasmas 13, 012701 (2006).
http://dx.doi.org/10.1063/1.2148911
46.
46.S. A. Slutz, K. J. Peterson, R. A. Vesey, R. W. Lemke, J. E. Bailey, W. Varnum, C. L. Ruiz, G. W. Cooper, G. A. Chandler, G. A. Rochau, and T. A. Mehlhorn, Phys. Plasmas 13, 102701 (2006).
http://dx.doi.org/10.1063/1.2354587
47.
47.G. A. Rochau, J. E. Bailey, G. A. Chandler, G. Cooper, G. S. Dunham, P. W. Lake, R. J. Leeper, R. W. Lemke, T. A. Mehlhorn, A. Nikroo, K. J. Peterson, C. L. Ruiz, D. G. Schroen, S. A. Slutz, D. Steinman, W. A. Stygar, and W. Varnum, Plasma Phys. Controlled Fusion 49, B591 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S55
48.
48.D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000);
http://dx.doi.org/10.1103/RevModPhys.72.167
48.M. K. Matzen, M. A. Sweeney, R. G. Adams, J. R. Asay, J. E. Bailey, G. R. Bennett, D. E. Bliss, D. D. Bloomquist, T. A. Brunner, R. B. Campbell, G. A. Chandler, C. A. Coverdale, M. E. Cuneo, J. -P. Davis, C. Deeney, M. P. Desjarlais, G. L. Donovan, C. J. Garasi, T. A. Haill, C. A. Hall, D. L. Hanson, M. J. Hurst, B. Jones, M. D. Knudson, R. J. Leeper, R. W. Lemke, M. G. Mazarakis, D. H. McDaniel, T. A. Mehlhorn, T. J. Nash, C. L. Olson, J. L. Porter, P. K. Rambo, S. E. Rosenthal, G. A. Rochau, L. E. Ruggles, C. L. Ruiz, T. W. L. Sanford, J. F. Seamen, D. B. Sinars, S. A. Slutz, I. C. Smith, K. W. Struve, W. A. Stygar, R. A. Vesey, E. A. Weinbrecht, D. F. Wenger, and E. P. Yu, Phys. Plasmas 12, 055503 (2005).
http://dx.doi.org/10.1063/1.1891746
49.
49.D. R. Kania, H. Kornblum, B. A. Hammel, J. Seely, C. Brown, U. Feldman, G. Glendinning, P. Young, E. Hsieh, M. Hennesian, L. DaSilva, B. J. MacGowan, D. S. Montgomery, C. A. Back, R. Doyas, J. Edwards, and R. W. Lee, Phys. Rev. A 46, 7853 (1992);
http://dx.doi.org/10.1103/PhysRevA.46.7853
49.T. S. Perry, R. I. Klein, D. R. Bach, K. S. Budil, R. Cauble, H. N. Kornblum, Jr., R. J. Wallace, and R. W. Lee, Phys. Rev. E 58, 3739 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.3739
50.
50.G. A. Rochau, J. E. Bailey, and J. J. MacFarlane, Phys. Rev. E 72, 066405 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.066405
51.
51.C. Chenais-Popovics, C. Fievet, J. P. Geindre, I. Matsushima, and J. C. Gauthier, Phys. Rev. A 42, 4788 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.4788
52.
52.R. F. Heeter, S. G. Anderson, R. Booth, G. V. Brown, J. Emig, S. Fulkerson, T. McCarville, D. Norman, M. B. Schneider, and B. K. F. Young, Rev. Sci. Instrum. 79, 10E303 (2008).
http://dx.doi.org/10.1063/1.2981180
53.
53.T. McCarville, S. Fulkerson, R. Booth, J. Emig, B. Young, S. Anderson, and B. Heeter, Rev. Sci. Instrum. 76, 103501 (2005);
http://dx.doi.org/10.1063/1.2090328
53.S. G. Anderson, R. F. Heeter, R. Booth, J. Emig, S. Fulkerson, T. McCarville, D. Norman, and B. K. F. Young, Rev. Sci. Instrum. 77, 063115 (2006).
http://dx.doi.org/10.1063/1.2214688
54.
54.B. L. Henke, F. G. Fujiwara, M. A. Tester, C. H. Dittmore, and M. A. Palmer, J. Opt. Soc. Am. B 1, 828 (1984).
http://dx.doi.org/10.1364/JOSAB.1.000828
55.
55.B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, and F. G. Fujiwara, J. Opt. Soc. Am. B 3, 1540 (1986).
http://dx.doi.org/10.1364/JOSAB.3.001540
56.
56.J. E. Bailey, G. A. Chandler, D. Cohen, M. E. Cuneo, M. E. Foord, R. F. Heeter, D. Jobe, P. W. Lake, J. J. MacFarlane, T. J. Nash, D. S. Nielson, R. Smelser, and J. Torres, Phys. Plasmas 9, 2186 (2002).
http://dx.doi.org/10.1063/1.1459454
57.
57.N. Izumi, R. Snavely, G. Gregori, J. A. Koch, H. -S. Park, and B. A. Remington, Rev. Sci. Instrum. 77, 10E325 (2006).
http://dx.doi.org/10.1063/1.2351924
58.
58.C. A. Iglesias, J. Quant. Spectrosc. Radiat. Transf. 99, 295 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2005.05.023
59.
59.A. Thorne, Spectrophysics (Wiley, New York, 1974).
60.
60.M. Schneider and R. Heeter, personal communication (2008).
61.
61.M. C. Hermann, Bull. Am. Phys. Soc. 48, 21 (2003);
61.J. F. Hansen, S. G. Glendinning, R. F. Heeter, and S. J. E. Brockington, Rev. Sci. Instrum. 79, 013504 (2008).
http://dx.doi.org/10.1063/1.2804765
62.
62.T. S. Perry, S. J. Davidson, F. J. D. Serduke, D. R. Bach, C. C. Smith, J. M. Foster, R. J. Doyas, R. A. Ward, C. A. Iglesias, F. J. Rogers, J. Abdallah, Jr., R. E. Stewart, R. J. Wallace, J. D. Kilkenny, and R. W. Lee, Astrophys. J., Suppl. Ser. 127, 433 (2000).
http://dx.doi.org/10.1086/313368
63.
63.A. V. Vinogradov, I. Yu. Skobelev, and E. A. Yukov, Sov. Phys. Usp. 22, 771 (1979).
http://dx.doi.org/10.1070/PU1979v022n10ABEH005613
64.
64.M. H. Key and R. J. Hutcheon, Advances in Atomic and Molecular Physics 16 (Academic, New York, 1980), pp. 201280.
65.
65.C. De Michelis and M. Mattioli, Nucl. Fusion 21, 677 (1981).
66.
66.H. R. Griem, Phys. Fluids 4, 2346 (1992).
67.
67.H. R. Griem, Phys. Scr. T83, 142 (1999).
68.
68.G. Dunham, J. E. Bailey, G. A. Rochau, P. W. Lake, and L. B. Nielsen-Weber, Rev. Sci. Instrum. 78, 063106 (2007);
http://dx.doi.org/10.1063/1.2748674
68.G. Dunham, G. A. Rochau, P. Lake, L. Nielsen-Weber, and D. Schuster, Rev. Sci. Instrum. 75, 3687 (2004);
http://dx.doi.org/10.1063/1.1788865
68.J. E. Bailey, R. Adams, A. L. Carlson, C. H. Ching, A. B. Filuk, and P. Lake, Rev. Sci. Instrum. 68, 1009 (1997).
http://dx.doi.org/10.1063/1.1147826
69.
69.E. Nardi and Z. Zinamon, J. Appl. Phys. 52, 7075 (1981);
http://dx.doi.org/10.1063/1.328415
69.J. E. Bailey, J. J. MacFarlane, P. Wang, A. L. Carlson, T. A. Haill, D. J. Johnson, P. Lake, E. J. McGuire, and T. A. Mehlhorn, Phys. Rev. E 56, 7147 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.7147
70.
70.J. D. Hares, J. D. Kilkenny, M. H. Key, and J. G. Lunney, Phys. Rev. Lett. 42, 1216 (1979);
http://dx.doi.org/10.1103/PhysRevLett.42.1216
70.A. Hauer, R. D. Cowan, B. Yaakobi, O. Barnouin, and R. Epstein, Phys. Rev. A 34, 411 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.411
71.
71.R. C. Mancini, C. F. Hooper, Jr., and R. L. Caldwell, J. Quant. Spectrosc. Radiat. Transf. 51, 201 (1994).
http://dx.doi.org/10.1016/0022-4073(94)90081-7
72.
72.D. Hoarty, O. Willi, L. Barringer, C. Vickers, R. Watt, and W. Nazarov, Phys. Plasmas 6, 2171 (1999).
http://dx.doi.org/10.1063/1.873468
73.
73.J. Abdallah, Jr., R. E. H. Clark, and J. M. Peek, Phys. Rev. A 44, 4072 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.4072
74.
74.R. Epstein, Phys. Rev. A 43, 961 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.961
75.
75.L. Lecherbourg, P. Renaudin, S. Bastiani-Ceccotti, J. -P. Geindre, C. Blancard, P. Cosse, G. Faussurier, R. Shepherd, and P. Audebert, High Energy Density Phys. 3, 175 (2007).
76.
76.L. A. Woltz and C. F. Hooper, Jr., Phys. Rev. A 38, 4766 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.4766
77.
77.R. C. Mancini, D. P. Kilcrease, L. A. Woltz, and C. F. Hooper, Jr., Comput. Phys. Commun. 63, 314 (1991).
http://dx.doi.org/10.1016/0010-4655(91)90258-M
78.
78.A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, London, 1934).
79.
79.P. T. Springer, T. S. Perry, R. E. Stewart, C. A. Iglesias, F. J. Serduke, B. G. Wilson, R. W. Lee, J. M. Foster, C. C. Smith, D. J. Hoarty, and S. J. Davidson, Proceedings of the Fourth International Workshop on Radiative Properties of Hot Dense Matter, edited by W. Goldstein, C. Hooper, J. Gauthier, J. Seely, and R. Lee (World Scientific, River Edge, 1991), p. 42.
80.
80.C. A. Iglesias and F. J. Rogers, Astrophys. J. 408, 371 (1991).
http://aip.metastore.ingenta.com/content/aip/journal/pop/16/5/10.1063/1.3089604
Loading
/content/aip/journal/pop/16/5/10.1063/1.3089604
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/16/5/10.1063/1.3089604
2009-03-23
2015-08-30

Abstract

Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150–300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacityexperiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia’s Z facility [M. K. Matzen et al., Phys. Plasmas12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to . This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design,transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/16/5/1.3089604.html;jsessionid=8gg9acsdl4ne4.x-aip-live-06?itemId=/content/aip/journal/pop/16/5/10.1063/1.3089604&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/16/5/10.1063/1.3089604
10.1063/1.3089604
SEARCH_EXPAND_ITEM