1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/17/3/10.1063/1.3330507
1.
1.M. Laroussi and T. Akan, Plasma Processes Polym. 4, 777 (2007).
http://dx.doi.org/10.1002/ppap.200700066
2.
2.X. Zhang, M. Li, R. Zhou, K. Feng, and S. Yang, Appl. Phys. Lett. 93, 021502 (2008).
http://dx.doi.org/10.1063/1.2959735
3.
3.T. L. Ni, F. Ding, X. D. Zhu, X. H. Wen, and H. Y. Zhou, Appl. Phys. Lett. 92, 241503 (2008).
http://dx.doi.org/10.1063/1.2945888
4.
4.M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec, and J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005).
http://dx.doi.org/10.1109/TPS.2005.845377
5.
5.A. Fridman, A. Chirokov, and A. Gutsol, J. Phys. D: Appl. Phys. 38, R1 (2005).
http://dx.doi.org/10.1088/0022-3727/38/2/R01
6.
6.X. T. Deng and M. G. Kong, IEEE Trans. Plasma Sci. 32, 1709 (2004).
http://dx.doi.org/10.1109/TPS.2004.831599
7.
7.N. Jiang, A. Ji, and Z. Cao, J. Appl. Phys. 106, 013308 (2009).
http://dx.doi.org/10.1063/1.3159884
8.
8.S. Wang, V. Schulz-von der Gathen, and H. F. Döbele, Appl. Phys. Lett. 83, 3272 (2003).
http://dx.doi.org/10.1063/1.1615674
9.
9.X. Lu and M. Laroussi, J. Appl. Phys. 100, 063302 (2006).
http://dx.doi.org/10.1063/1.2349475
10.
10.X. Lu, Q. Xiong, Z. Xiong, J. Hu, F. Zhou, W. Gong, Y. Xian, C. Zou, Z. Tang, Z. Jiang, and Y. Pan, J. Appl. Phys. 105, 043304 (2009).
http://dx.doi.org/10.1063/1.3079503
11.
11.J. Shi, F. Zhong, J. Zhang, D. W. Liu, and M. G. Kong, Phys. Plasmas 15, 013504 (2008).
http://dx.doi.org/10.1063/1.2828551
12.
12.N. Mericam-Bourdet, M. Laroussi, A. Begum, and K. Karakas, J. Phys. D 42, 055207 (2009).
http://dx.doi.org/10.1088/0022-3727/42/5/055207
13.
13.X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng, and S. Yang, J. Appl. Phys. 105, 063302 (2009).
http://dx.doi.org/10.1063/1.3080249
14.
14.E. Stoffels, I. E. Kieft, R. E. J. Sladek, L. J. M. van den Bedem, E. P. van der Laan, and M. Steinbuch, Plasma Sources Sci. Technol. 15, S169 (2006).
http://dx.doi.org/10.1088/0963-0252/15/4/S03
15.
15.G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, Plasma Chem. Plasma Process. 27, 163 (2007).
http://dx.doi.org/10.1007/s11090-007-9048-4
16.
16.N. Balcon, A. Aanesland, and R. Boswell, Plasma Sources Sci. Technol. 16, 217 (2007).
http://dx.doi.org/10.1088/0963-0252/16/2/002
17.
17.D. B. Kim, J. K. Rhee, B. Gweon, S. Y. Moon, and W. Choe, Appl. Phys. Lett. 91, 151502 (2007).
http://dx.doi.org/10.1063/1.2794774
18.
18.V. Leveille and S. Coulombe, Plasma Sources Sci. Technol. 14, 467 (2005).
http://dx.doi.org/10.1088/0963-0252/14/3/008
19.
19.S. Y. Moon and W. Choe, Spectrochim. Acta, Part B 58, 249 (2003).
http://dx.doi.org/10.1016/S0584-8547(02)00259-8
20.
20.C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003).
http://dx.doi.org/10.1088/0963-0252/12/2/301
21.
21.A. Ionascut-Nedelcescu, C. Carlone, U. Kogelschatz, D. V. Gravelle, and M. I. Boulos, J. Appl. Phys. 103, 063305 (2008).
http://dx.doi.org/10.1063/1.2891419
22.
22.N. K. Bibinov, A. A. Fateev, and K. Wiesemann, J. Phys. D: Appl. Phys. 34, 1819 (2001).
http://dx.doi.org/10.1088/0022-3727/34/12/309
23.
23.M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, R. F. Hicks, and S. E. Babayan, J. Appl. Phys. 96, 7011 (2004).
http://dx.doi.org/10.1063/1.1815047
24.
24.S. -Z. Li, J. P. Lim, J. G. Kang, and H. S. Uhm, Phys. Plasmas 13, 093503 (2006).
http://dx.doi.org/10.1063/1.2355428
25.
25.A. V. Pipa, T. Bindemann, R. Foest, E. Kindel, J. Röpcke, and K. -D. Weltmann, J. Phys. D: Appl. Phys. 41, 194011 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/194011
26.
26.C. -S. Ha, J. -Y. Choi, H. -J. Lee, D. -H. Kim, and H. J. Lee, IEEE Trans. Plasma Sci. 36, 970 (2008).
http://dx.doi.org/10.1109/TPS.2008.924267
27.
27.F. J. Gordillo-Vazquez, M. Camero, and C. Gomez-Aleixandre, Plasma Sources Sci. Technol. 15, 42 (2006).
http://dx.doi.org/10.1088/0963-0252/15/1/007
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/3/10.1063/1.3330507
Loading
/content/aip/journal/pop/17/3/10.1063/1.3330507
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/17/3/10.1063/1.3330507
2010-03-08
2014-09-22

Abstract

A microplasma jet with a capillary electrode working at atmospheric pressure is developed to create nonthermal plasma. This jet can be operated at an excitation frequency either in several tens of kilohertz ac range (or pulsed voltage with a repetition rate of kilohertz range) or in radio-frequency range. The working gas, helium or argon, and the additive gas, oxygen, are fed into the plasma jet. The discharge has been characterized by optical emission spectroscopy. The electrical property of the discharge has been studied by means of voltage and current probes. The dynamic nature of the plume is investigated by using intensified charged coupled device camera. The electron temperature is estimated from the modified Boltzmann plot method utilizing the Ar transitions. The plume temperature is determined by using the fitting the fine structure of the emission bands of OH molecules and by utilizing the line shape of the transition. They are compared with the results obtained by optical fiber thermometer. The characteristics of plasma jet are studied by employing different excitation mode and by adjusting the gas flow rates, the applied voltage, and the amount of additive flow. The characteristic differences between the Ar plasma jet and the He plasma jet are compared. The effects of the additive gas are investigated. The plasma bullet velocity is found to increase with the applied voltage but to decrease with the duty cycle. Also the preliminary results of microplasma effects on the human breast cancer cells are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/17/3/1.3330507.html;jsessionid=29fdq9ywx8s74.x-aip-live-02?itemId=/content/aip/journal/pop/17/3/10.1063/1.3330507&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/3/10.1063/1.3330507
10.1063/1.3330507
SEARCH_EXPAND_ITEM