Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/17/5/10.1063/1.3292634
1.
1.B. G. Logan, F. M. Bieniosek, C. M. Celata, J. Coleman, W. Greenway, E. Henestroza, J. W. Kwan, E. P. Lee, M. Leitner, P. K. Roy, P. A. Seidl, J. -L. Vay, W. L. Waldron, S. S. Yu, J. J. Barnard, R. H. Cohen, A. Friedman, D. P. Grote, M. Kireeff Covo, A. W. Molvik, S. M. Lund, W. R. Meier, W. Sharp, R. C. Davidson, P. C. Efthimion, E. P. Gilson, L. Grisham, I. D. Kaganovich, H. Qin, A. B. Sefkow, E. A. Startsev, D. R. Welch, and C. L. Olson, Nucl. Instrum. Methods Phys. Res. A 577, 1 (2007).
http://dx.doi.org/10.1016/j.nima.2007.02.070
2.
2.S. M. Lidia, P. K. Roy, P. A. Seidl, W. L. Waldron, and E. P. Gilson, Proceedings of the 2009 Particle Accelerator Conference, Vancouver, May 2009 (unpublished), Paper No. TU6PFP092.
3.
3.D. P. Grote, A. Friedman, I. Haber, W. Fawley, and J. -L. Vay, Nucl. Instrum. Methods Phys. Res. A 415, 428 (1998).
http://dx.doi.org/10.1016/S0168-9002(98)00608-1
4.
4.A. Friedman, J. J. Barnard, R. J. Briggs, R. C. Davidson, M. Dorf, D. P. Grote, E. Henestroza, E. P. Lee, M. A. Leitner, B. G. Logan, A. B. Sefkow, W. M. Sharp, W. L. Waldron, D. R. Welch, and S. S. Yu, Nucl. Instrum. Methods Phys. Res. A 606, 6 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.189
5.
5.W. M. Sharp, A. Friedman, D. P. Grote, E. Henestroza, M. A. Leitner, and W. L. Waldron, Nucl. Instrum. Methods Phys. Res. A 606, 97 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.229
6.
6.W. M. Sharp, A. Friedman, D. P. Grote, E. Henestroza, M. A. Leitner, and W. L. Waldron, Proceedings of the 2009 Particle Accelerator Conference, Vancouver, May 2009 (unpublished), Paper No. TH5PFP072.
7.
7.A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, A. Faltens, E. Henestroza, J. -Y. Jung, J. W. Kwan, E. P. Lee, M. A. Leitner, B. G. Logan, J. -L. Vay, W. L. Waldron, R. C. Davidson, M. Dorf, E. P. Gilson, and I. Kaganovich, Proceedings of the 2009 International Computational Accelerator Physics Meeting, San Francisco, September 2009 (unpublished).
8.
8.J. J. Barnard, G. J. Caporaso, S. S. Yu, and S. Eylon, Proceedings of the 1993 Particle Accelerator Conference, Washington, D.C., May 1993 (unpublished), pp. 712714.
9.
9.E. P. Lee, private communication (2007);
9.D. R. Welch, J. E. Coleman, P. A. Seidl, P. K. Roy, E. Henestroza, E. P. Lee, A. B. Sefkow, E. P. Gilson, T. C. Genoni, and D. V. Rose, Phys. Rev. ST Accel. Beams 11, 064701 (2008), Appendix. A.
http://dx.doi.org/10.1103/PhysRevSTAB.11.064701
10.
10.Y. -J. Chen, Nucl. Instrum. Methods Phys. Res. A 292, 455 (1990).
http://dx.doi.org/10.1016/0168-9002(90)90403-S
11.
11.Y. -J. Chen, Nucl. Instrum. Methods Phys. Res. A 398, 139 (1997).
http://dx.doi.org/10.1016/S0168-9002(97)00738-9
12.
12.See supplementary material at http://dx.doi.org/10.1063/1.3292634 for A. Friedman, “Some kinematic aspects of neutralized drift compression,” LLNL Note No. LLNL-TR-402447, March 2008.[Supplementary Material]
13.
13.A. B. Sefkow, R. C. Davidson, I. D. Kaganovich, E. P. Gilson, P. K. Roy, P. A. Seidl, S. S. Yu, D. R. Welch, D. V. Rose, and J. J. Barnard, Nucl. Instrum. Methods Phys. Res. A 577, 289 (2007).
http://dx.doi.org/10.1016/j.nima.2007.02.064
14.
14.D. R. Welch, J. E. Coleman, P. A. Seidl, P. K. Roy, E. Henestroza, E. P. Lee, A. B. Sefkow, E. P. Gilson, T. C. Genoni, and D. V. Rose, PRST-AB 11, 064701 (2008).
15.
15.I. D. Kaganovich, R. C. Davidson, M. Dorf, E. A. Startsev, A. B. Sefkow, J. J. Barnard, A. Friedman, E. P. Lee, S. M. Lidia, B. G. Logan, P. K. Roy, P. A. Seidel, and D. R. Welch, Proceedings of the 2009 Particle Accelerator Conference, Vancouver, May 2009 (unpublished).
16.
16.I. D. Kaganovich, R. C. Davidson, M. A. Dorf, E. A. Startsev, A. B. Sefkow, E. P. Lee, and A. Friedman, Phys. Plasmas 17, 056703 (2010).
http://dx.doi.org/10.1063/1.3335766
17.
17.R. C. Davidson, E. A. Startsev, M. Dorf, I. D. Kaganovich, and H. Qin, Proceedings of the 2009 Particle Accelerator Conference, Vancouver, May 2009 (unpublished).
18.
18.J. -L. Vay, P. Colella, J. W. Kwan, P. McCorquodale, D. B. Serani, A. Friedman, D. P. Grote, G. Westenskow, J. -C. Adam, A. Heron, and I. Haber, Phys. Plasmas 11, 2928 (2004).
http://dx.doi.org/10.1063/1.1689669
19.
19.P. K. Roy, private communication (2009).
20.
20.Nucl. Instrum. Methods A 606 (2009); Proceedings of the 17th International Symposium on Heavy Ion Inertial Fusion (HIF2008), edited by Y. Oguri, J. Hasegawa, K. Horioka, and S. Kawata, Tokyo, Japan, 4–8 August 2008.
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/5/10.1063/1.3292634
Loading
/content/aip/journal/pop/17/5/10.1063/1.3292634
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/17/5/10.1063/1.3292634
2010-03-24
2016-12-04

Abstract

Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at the Lawrence Berkeley National Laboratory. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam’s longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (one-, two-, and three-dimensional) employed and the space-charge-dominated beamdynamics being realized.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/17/5/1.3292634.html;jsessionid=vsMttfuPqEU1395LHvUlvQL_.x-aip-live-02?itemId=/content/aip/journal/pop/17/5/10.1063/1.3292634&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pop.aip.org/17/5/10.1063/1.3292634&pageURL=http://scitation.aip.org/content/aip/journal/pop/17/5/10.1063/1.3292634'
Right1,Right2,Right3,