banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Capsule performance optimization in the National Ignition Campaigna)
a)Paper NI2 1, Bull. Am. Phys. Soc. 54, 178 (2009).
Rent this article for
Access full text Article
1.J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).
2.G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004).
3.G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975).
4.M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001).
5.T. C. Sangster, R. L. McCrory, V. N. Goncharov, D. R. Harding, S. J. Loucks, P. W. McKenty, D. D. Meyerhofer, S. Skupsky, B. Yaakobi, B. J. MacGowan, L. J. Atherton, B. A. Hammel, J. D. Lindl, E. I. Moses, J. L. Porter, M. E. Cuneo, M. K. Matzen, C. W. Barnes, J. C. Fernandez, D. C. Wilson, J. D. Kilkenny, T. P. Bernat, A. Nikroo, B. G. Logan, S. Yu, R. D. Petrasso, J. D. Sethian, and S. Obenschain, Nucl. Fusion 47, S686 (2007).
6.D. S. Clark, S. W. Haan, and J. D. Salmonson, Phys. Plasmas 15, 056305 (2008).
7.S. W. Haan, M. C. Herrmann, T. R. Dittrich, A. J. Fetterman, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, G. L. Strobel, and L. J. Suter, Phys. Plasmas 12, 056316 (2005).
8.E. L. Dewald, J. Milovich, J. Edwards, C. Thomas, R. Kirkwood, D. Meeker, O. Jones, N. Izumi, and O. L. Landen, Rev. Sci. Instrum. 79, 10E903 (2008).
9.T. R. Boehly, D. Munro, P. M. Celliers, R. E. Olson, D. G. Hicks, V. N. Goncharov, G. W. Collins, H. F. Robey, S. X. Hu, J. A. Morozas, T. C. Sangster, O. L. Landen, and D. D. Meyerhofer, Phys. Plasmas 16, 056302 (2009).
10.D. Hicks, Bull. Am. Phys. Soc. 53, 2 (2008).
11.B. Spears, D. Hicks, C. Velsko, M. Stoyer, H. Robey, D. Munro, S. Haan, O. Landen, A. Nikroo, and H. Huang, J. Phys.: Conf. Ser. 112, 022003 (2008).
12.G. A. Kyrala, A. Seifter, J. Kline, N. Hoffman, and S. Robert Goldman, Bull. Am. Phys. Soc. 53, 247 (2008).
13.N. M. Hoffman, D. C. Wilson, and G. A. Kyrala, Rev. Sci. Instrum. 77, 10E705 (2006).
14.R. K. Kirkwood, J. Milovich, D. K. Bradley, M. Schmitt, S. R. Goldman, D. H. Kalantar, D. Meeker, O. S. Jones, S. M. Pollaine, P. A. Amendt, E. Dewald, J. Edwards, O. L. Landen, and A. Nikroo, Phys. Plasmas 16, 012702 (2009).
15.N. D. Delamater, G. R. Magelssen, and A. A. Hauer, Phys. Rev. E 53, 5240 (1996);
15.G. R. Magelssen, N. D. Delamater, E. L. Lindman, and A. A. Hauer, Phys. Rev. E 57, 4663 (1998).
16.T. R. Boehly, D. G. Hicks, P. M. Celliers, T. J. B. Collins, R. Earley, J. H. Eggert, D. Jacobs-Perkins, S. J. Moon, E. Vianello, D. D. Meyerhofer, and G. W. Collins, Phys. Plasmas 11, L49 (2004).
17.P. M. Celliers, D. K. Bradley, G. W. Collins, D. H. Hicks, T. R. Boehly, and W. J. Armstrong, Rev. Sci. Instrum. 75, 4916 (2004).
18.D. H. Munro, P. M. Celliers, G. W. Collins, D. M. Gold, L. B. Da Silva, S. W. Haan, R. C. Cauble, B. A. Hammel, and W. W. Hsing, Phys. Plasmas 8, 2245 (2001).
19.H. F. Robey, D. H. Munro, B. K. Spears, M. M. Marinak, O. S. Jones, M. V. Patel, S. W. Haan, J. D. Salmonson, O. L. Landen, T. R. Boehly, and A. Nikroo, J. Phys.: Conf. Ser. 112, 022078 (2008).
20.R. L. Kauffman, L. J. Suter, C. B. Darrow, J. D. Kilkenny, H. N. Kornblum, D. S. Montgomery, D. W. Phillion, M. D. Rosen, A. R. Theissen, R. J. Wallace, and F. Ze, Phys. Rev. Lett. 73, 2320 (1994).
21.H. F. Robey, T. R. Boehly, R. E. Olson, A. Nikroo, P. M. Celliers, O. L. Landen, and D. D. Meyerhofer, Phys. Plasmas 17, 012703 (2010).
22.A. B. Bullock, O. L. Landen, B. E. Blue, J. Edwards, and D. K. Bradley, J. Appl. Phys. 100, 043301 (2006).
23.D. C. Wilson, R. L. Singleton, Jr., J. P. Grondalski, N. M. Hoffman, A. Nobile, Jr., F. H. Séguin, J. A. Frenje, C. K. Li, and R. D. Petrasso, Rev. Sci. Instrum. 77, 10E711 (2006).
24.T. J. Murphy, J. M. Wallace, N. D. Delamater, C. W. Barnes, P. Gobby, A. A. Hauer, E. Lindman, G. Magelssen, J. B. Moore, J. A. Oertel, R. Watt, O. L. Landen, P. Amendt, M. Cable, C. Decker, B. A. Hammel, J. A. Koch, L. J. Suter, R. E. Turner, R. J. Wallace, F. J. Marshall, D. Bradley, R. S. Craxton, R. Keck, J. P. Knauer, R. Kremens, and J. D. Schnittman, Phys. Rev. Lett. 81, 108 (1998).
25.R. E. Turner, P. Amendt, O. L. Landen, S. G. Glendinning, P. Bell, C. Decker, B. A. Hammel, D. Kalantar, D. Lee, R. Wallace, D. Bradley, M. Cable, R. S. Craxton, R. Kremens, W. Seka, J. Schnittman, K. Thorp, T. J. Murphy, N. Delamater, C. W. Barnes, A. Hauer, G. Magelssen, and J. Wallace, Phys. Plasmas 7, 333 (2000).
26.R. E. Turner, P. A. Amendt, O. L. Landen, L. J. Suter, R. J. Wallace, and B. A. Hammel, Phys. Plasmas 10, 2429 (2003).
27.P. A. Amendt, R. E. Turner, and O. L. Landen, Phys. Rev. Lett. 89, 165001 (2002).
28.S. W. Haan, M. C. Herrmann, J. D. Salmonson, P. A. Amendt, D. A. Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, B. K. Spears, and L. J. Suter, Eur. Phys. J. D 44, 249 (2007).
29.J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, J. Appl. Phys. 105, 1 (2009).
30.H. Sawada, S. P. Regan, D. D. Meyerhofer, I. V. Igumenshchev, V. N. Goncharov, T. R. Boehly, R. Epstein, T. C. Sangster, V. A. Smalyuk, B. Yaakobi, G. Gregori, S. H. Glenzer, and O. L. Landen, Phys. Plasmas 14, 122703 (2007);
30.A. L. Kritcher, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone, O. L. Landen, H. J. Lee, R. W. Lee, E. C. Morse, A. Ng, S. Pollaine, D. Price, and S. H. Glenzer, Science 322, 69 (2008);
30.H. J. Lee, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone, C. Fortmann, B. A. Hammel, A. L. Kritcher, O. L. Landen, R. W. Lee, D. D. Meyerhofer, D. H. Munro, R. Redmer, S. P. Regan, S. Weber, and S. H. Glenzer, Phys. Rev. Lett. 102, 115001 (2009).


Image of FIG. 1.

Click to view

FIG. 1.

Schematic of 14 laser and target parameters is varied.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Reemission sphere experimental setup with example OMEGA data. (b) of 900 eV x-ray emission from 1.4-mm-diameter reemission sphere vs inner cone fraction at 0.7 ns using 6.4-mm-long hohlraums and 100 eV drive.

Image of FIG. 3.

Click to view

FIG. 3.

First three shocks experimental setup with example OMEGA VISAR data.

Image of FIG. 4.

Click to view

FIG. 4.

Fourth rise experimental setup with example OMEGA SOP data.

Image of FIG. 5.

Click to view

FIG. 5.

Streaked capsule radiography experimental setup for NIC shots.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Example of streaked 5.2 keV radiograph of a 0.42 mm inside diameter BeCu capsule driven by an OMEGA 200 eV, 2.5 ns shaped drive hohlraum. (b) Solid points are extracted peak implosion velocity vs percent ablator mass remaining from six shots using (black) and (red) initial thickness graded doped BeCu shells. Open squares are postshot Lasnex simulations.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Symmetry capsule experimental setup at OMEGA. (b) 4–6 keV core x-ray images and extracted of emission shape from imploded 50 atm filled CH capsule vs inner cone fraction using NIC-relevant 270 eV peak drive.

Image of FIG. 8.

Click to view

FIG. 8.

Gated 8–10 keV x-ray images from pole and equator view of convergence CH capsules driven by 500 kJ 270 eV peak temperature NIF hohlraums.

Image of FIG. 9.

Click to view

FIG. 9.

Expected residual variances after tuning in random measurement error, systematic errors, target metrology errors, and laser diagnostic errors normalized to budget for each of the laser and target adjustable parameters.


Generic image for table

Click to view

Table I.

Expected initial and residual post-tune offset from optimum ignition implosion performance, associated initial and post-tune offsets in optimal laser and target parameters, and required accuracy for tuning associated observables.


Article metrics loading...



A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Capsule performance optimization in the National Ignition Campaigna)