1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Applied spectroscopy in pulsed power plasmasa)
a) Paper WR1 1, Bull. Am. Phys. Soc. , 342 (2009).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/17/5/10.1063/1.3309722
1.
1.National Research Council, Frontiers in High Energy Density Physics: The X-Games Of Contemporary Science (The National Academies, Washington, D.C., 2003).
2.
2.S. T. Pai and Q. Zhang, Introduction to High Power Pulse Technology (World Scientific, Singapore, 1995).
3.
3.G. Mesyats, Pulsed Power (Springer, New York, 2004).
4.
4.H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
5.
5.H. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
6.
6.Y. Maron, E. Sarid, E. Nahshoni, and O. Zahavi, Phys. Rev. A 39, 5856 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.5856
7.
7.Y. Maron, E. Sarid, O. Zahavi, L. Perelmutter, and M. Sarfarty, Phys. Rev. A 39, 5842 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.5842
8.
8.C. Litwin, Y. Maron, and E. Sarid, Phys. Plasmas 1, 758 (1994).
http://dx.doi.org/10.1063/1.870767
9.
9.H. Bluhm and P. Hoppe, Nucl. Instrum. Methods Phys. Res. A 464, 6 (2001).
http://dx.doi.org/10.1016/S0168-9002(00)01320-6
10.
10.R. Arad, K. Tsigutkin, Y. Maron, A. Fruchtman, and J. D. Huba, Phys. Plasmas 10, 112 (2003).
http://dx.doi.org/10.1063/1.1527630
11.
11.R. Arad, K. Tsigutkin, Yu. V. Ralchenko, and Y. Maron, Phys. Plasmas 7, 3797 (2000).
http://dx.doi.org/10.1063/1.1286801
12.
12.B. Rubinstein, J. Citrin, R. Doron, R. Arad, Y. Maron, and A. Filler, Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, 9–13 June 2008 (ECA, Lausanne, 2008), Vol. 32D, p. O4055.
13.
13.A. S. Kingsep, K. V. Chukbar, and V. V. Yan’kov, Rev. Plasma Phys. 16, 243 (1990).
14.
14.A. Fruchtman, Phys. Fluids B 3, 1908 (1991).
http://dx.doi.org/10.1063/1.859659
15.
15.B. V. Weber, J. R. Boller, and R. J. Commisso, J. Appl. Phys. 45, 1043 (1984).
16.
16.M. Sarfaty, Y. Maron, Ya. E. Krasik, A. Weingarten, R. Arad, R. Shpitalnik, and A. Fruchtman, Phys. Plasmas 2, 2122 (1995).
http://dx.doi.org/10.1063/1.871299
17.
17.R. Shpitalnik, A. Weingarten, K. Gomberoff, Ya. Krasik, and Y. Maron, Phys. Plasmas 5, 792 (1998).
http://dx.doi.org/10.1063/1.872766
18.
18.G. Davara, L. Gregorian, E. Kroupp, and Y. Maron, Phys. Plasmas 5, 1068 (1998).
http://dx.doi.org/10.1063/1.872637
19.
19.L. Gregorian, V. A. Bernshtam, E. Kroupp, G. Davara, and Y. Maron, Phys. Rev. E 67, 016404 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.016404
20.
20.L. Gregorian, E. Kroupp, G. Davara, A. Starobinets, V. I. Fisher, V. A. Bernshtam, Yu. V. Ralchenko, Y. Maron, A. Fisher, and D. H. H. Hoffmann, Phys. Rev. E 71, 056402 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.056402
21.
21.L. Gregorian, G. Davara, E. Kroupp, A. Starobinets, V. Bernshtam, Yu. V. Ralchenko, and Y. Maron, Phys. Plasmas 12, 092704 (2005).
http://dx.doi.org/10.1063/1.2039943
22.
22.E. Stambulchik, K. Tsigutkin, and Y. Maron, Phys. Rev. Lett. 98, 225001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.225001
23.
23.Y. Maron, M. D. Coleman, D. A. Hammer, and H. S. Peng, Phys. Rev. Lett. 57, 699 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.699
24.
24.Y. Maron, M. D. Coleman, D. A. Hammer, and H. S. Peng, Phys. Rev. A 36, 2818 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.2818
25.
25.T. M. Antonsen and E. Ott, Phys. Fluids 19, 52 (1976).
http://dx.doi.org/10.1063/1.861327
26.
26.M. Desjarlais, Phys. Rev. Lett. 59, 2295 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2295
27.
27.J. E. Bailey, A. B. Filuk, A. L. Carlson, D. J. Johnson, P. Lake, E. J. McGuire, T. A. Mehlhorn, T. D. Pointon, T. J. Renk, W. A. Stygar, and Y. Maron, Phys. Rev. Lett. 74, 1771 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1771
28.
28.J. P. Vandevender and D. L. Cook, Science 232, 831 (1986).
http://dx.doi.org/10.1126/science.232.4752.831
29.
29.Y. Maron, M. D. Coleman, D. A. Hammer, and H. S. Peng, J. Appl. Phys. 61, 4781 (1987).
http://dx.doi.org/10.1063/1.338816
30.
30.A. B. Filuk, J. E. Bailey, A. L. Carlson, D. J. Johnson, P. Lake, T. A. Mehlhorn, L. P. Mix, T. J. Renk, W. A. Styger, and Y. Maron, Phys. Rev. Lett. 77, 3557 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3557
31.
31.A. Filuk and J. E. Bailey, private communication (2009).
32.
32.J. E. Bailey, A. B. Filuk, A. L. Carlson, D. J. Johnson, P. Lake, E. J. McGuire, T. A. Mehlhorn, T. D. Pointon, T. J. Renk, W. A. Stygar, Y. Maron, and E. Stambulchik, AIP Conf. Proc. 381, 245 (1996).
http://dx.doi.org/10.1063/1.51317
33.
33.D. Fisher, Y. Maron, and L. P. Petaevskii, Phys. Rev. A 58, 2214 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.2214
34.
34.E. Stambulchik, Y. Maron, J. E. Bailey, and M. E. Cuneo, Phys. Rev. A 65, 052726 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.052726
35.
35.C. Deeney, T. J. Nash, R. B. Spielman, J. F. Seamen, G. A. Chandler, K. W. Struve, J. L. Porter, W. A. Stygar, J. S. McGurn, D. O. Jobe, T. L. Gilliland, J. A. Torres, M. F. Vargas, L. E. Ruggles, S. Breeze, R. C. Mock, M. R. Douglas, D. L. Fehl, D. H. McDaniel, M. K. Matzen, D. L. Peterson, W. Matsuka, N. F. Roderick, and J. J. MacFarlane, Phys. Rev. E 56, 5945 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.5945
36.
36.T. W. L. Sanford, G. O. Allshouse, B. M. Marder, T. J. Nash, R. C. Mock, R. B. Spielman, J. F. Seamen, J. S. McGurn, D. Jobe, T. L. Gilliland, M. Vargas, K. W. Struve, W. A. Stygar, M. R. Douglas, M. K. Matzen, J. H. Hammer, J. S. De Groot, J. L. Eddleman, D. L. Peterson, D. Mosher, K. G. Whitney, J. W. Thornhill, P. E. Pulsifer, J. P. Apruzese, and Y. Maron, Phys. Rev. Lett. 77, 5063 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.5063
37.
37.R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, J. A. Torres, D. M. Zagar, T. L. Gilliland, D. O. Jobe, J. L. McKenney, R. C. Mock, M. Vargas, T. Wagoner, and D. L. Peterson, Phys. Plasmas 5, 2105 (1998).
http://dx.doi.org/10.1063/1.872881
38.
38.C. Deeney, M. R. Douglas, R. B. Spielman, T. J. Nash, D. L. Peterson, P. L. Eplatteneir, G. A. Chandler, J. F. Seamen, and K. W. Struve, Phys. Rev. Lett. 81, 4883 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4883
39.
39.M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, Science 322, 1822 (2008).
http://dx.doi.org/10.1126/science.1165278
40.
40.M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and W. W. Anderson, Phys. Rev. Lett. 87, 225501 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.225501
41.
41.M. E. Foord, R. F. Heeter, P. A. M. van Hoof, R. S. Thoe, J. E. Bailey, M. E. Cuneo, H. -K. Chung, D. A. Liedahl, K. B. Fournier, G. A. Chandler, V. Jonauskas, R. Kisielius, L. P. Mix, C. Ramsbottom, P. T. Springer, F. P. Keenan, S. J. Rose, and W. H. Goldstein, Phys. Rev. Lett. 93, 055002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.055002
42.
42.G. A. Rochau, J. E. Bailey, Y. Maron, G. A. Chandler, G. S. Dunham, D. V. Fisher, V. I. Fisher, R. W. Lemke, J. J. MacFarlane, K. J. Peterson, D. G. Schroen, S. A. Slutz, and E. Stambulchik, Phys. Rev. Lett. 100, 125004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.125004
43.
43.J. E. Bailey, G. A. Rochau, C. A. Iglesias, J. Abdallah, J. J. MacFarlane, I. Golovkin, P. Wang, R. C. Mancini, P. W. Lake, T. C. Moore, M. Bump, O. Garcia, and S. Mazevet, Phys. Rev. Lett. 99, 265002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.265002
44.
44.J. E. Bailey, G. A. Chandler, S. A. Slutz, G. R. Bennett, G. Cooper, J. S. Lash, S. Lazier, R. Lemke, T. J. Nash, D. S. Nielsen, T. C. Moore, C. L. Ruiz, D. G. Schroen, R. Smelser, J. Torres, and R. A. Vesey, Phys. Rev. Lett. 89, 095004 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.095004
45.
45.D. L. Peterson, R. L. Bowers, W. Matuska, K. D. McLenithan, G. A. Chandler, C. Deeney, M. S. Derzon, M. Douglas, M. K. Matzen, T. J. Nash, R. B. Spielman, K. W. Struve, W. A. Stygar, and N. F. Roderick, Phys. Plasmas 6, 2178 (1999).
http://dx.doi.org/10.1063/1.873469
46.
46.T. W. L. Sanford, R. E. Olson, R. L. Bowers, G. A. Chandler, M. S. Derzon, D. E. Hebron, R. J. Leeper, R. C. Mock, T. J. Nash, D. L. Peterson, L. E. Ruggles, W. W. Simpson, K. W. Struve, and R. A. Vesey, Phys. Rev. Lett. 83, 5511 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5511
47.
47.R. W. Lemke, J. E. Bailey, G. A. Chandler, T. J. Nash, S. A. Slutz, and T. A. Mehlhorn, Phys. Plasmas 12, 012703 (2005).
http://dx.doi.org/10.1063/1.1819936
48.
48.J. E. Bailey, G. A. Chandler, R. C. Mancini, S. A. Slutz, G. A. Rochau, M. Bump, T. J. Buris-Mog, G. Cooper, G. Dunham, I. Golovkin, J. D. Kilkenny, P. W. Lake, R. J. Leeper, R. Lemke, J. J. MacFarlane, T. A. Mehlhorn, T. C. Moore, T. J. Nash, A. Nikroo, D. S. Nielsen, K. L. Peterson, C. L. Ruiz, D. G. Schroen, D. Steinman, and W. Varnum, Phys. Plasmas 13, 056301 (2006).
http://dx.doi.org/10.1063/1.2177640
49.
49.R. R. Peterson, D. L. Peterson, R. G. Watt, G. Idzorek, T. Tierney, and M. Lopez, Phys. Plasmas 13, 056901 (2006).
http://dx.doi.org/10.1063/1.2186050
50.
50.J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, C. Blancard, Ph. Cosse, and G. Faussurier, Phys. Plasmas 16, 058101 (2009).
http://dx.doi.org/10.1063/1.3089604
51.
51.G. A. Rochau, J. E. Bailey, G. A. Chandler, G. Cooper, G. S. Dunham, P. W. Lake, R. J. Leeper, R. W. Lemke, T. A. Mehlhorn, A. Nikroo, K. J. Peterson, C. L. Ruiz, D. G. Schroen, S. A. Slutz, D. Steinman, W. A. Stygar, and W. Varnum, Plasma Phys. Controlled Fusion 49, B591 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S55
52.
52.V. I. Fisher, D. V. Fisher, and Y. Maron, High Energy Density Phys. 3, 283 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.02.020
53.
53.J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Phys. 3, 181 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.02.016
54.
54.S. Glenzer and H. J. Kunze, Phys. Rev. A 53, 2225 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.2225
55.
55.J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, J. C. Pain, F. Gilleron, C. Blancard, Ph. Cosse, G. Faussurier, G. A. Chandler, T. J. Nash, D. S. Nielsen, and P. W. Lake, Rev. Sci. Instrum. 79, 113104 (2008).
http://dx.doi.org/10.1063/1.3020710
56.
56.C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).
http://dx.doi.org/10.1086/177381
57.
57.J. E. Bailey, G. A. Chandler, S. A. Slutz, I. Golovkin, P. W. Lake, J. J. MacFarlane, R. C. Mancini, T. J. Burris-Mog, G. Cooper, R. J. Leeper, T. A. Mehlhorn, T. C. Moore, T. J. Nash, D. S. Nielsen, C. L. Ruiz, D. G. Schroen, and W. A. Varnum, Phys. Rev. Lett. 92, 085002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.085002
58.
58.C. L. Ruiz, G. W. Cooper, S. A. Slutz, J. E. Bailey, G. A. Chandler, T. J. Nash, T. A. Mehlhorn, R. J. Leeper, D. Fehl, A. J. Nelson, J. Franklin, and L. Ziegler, Phys. Rev. Lett. 93, 015001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.015001
59.
59.S. A. Slutz, K. J. Peterson, R. A. Vesey, R. W. Lemke, J. E. Bailey, W. Varnum, C. L. Ruiz, G. W. Cooper, G. A. Chandler, G. A. Rochau, and T. A. Mehlhorn, Phys. Plasmas 13, 102701 (2006).
http://dx.doi.org/10.1063/1.2354587
60.
60.B. Yaakobi, D. Steel, E. Thorsos, A. Hauer, and B. Perry, Phys. Rev. Lett. 39, 1526 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.1526
61.
61.J. D. Kilkenny, R. W. Lee, M. H. Key, and J. G. Lunney, Phys. Rev. A 22, 2746 (1980).
http://dx.doi.org/10.1103/PhysRevA.22.2746
62.
62.B. A. Hammel, C. J. Keane, M. D. Cable, D. R. Kania, J. D. Kilkenny, R. W. Lee, and R. Pasha, Phys. Rev. Lett. 70, 1263 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1263
63.
63.C. J. Keane, B. A. Hammel, A. L. Osterheld, and D. R. Kania, Phys. Rev. Lett. 72, 3029 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3029
64.
64.S. P. Regan, J. A. Delettrez, F. J. Marshall, J. M. Soures, V. A. Smalyuk, B. Yaakobi, R. Epstein, V. Yu. Glebov, P. A. Jaanimagi, D. D. Meyerhofer, P. B. Radha, T. C. Sangster, W. Seka, S. Skupsky, C. Stoeckl, R. P. J. Town, D. A. Haynes, I. E. Golovkin, C. F. Hooper, J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Seguin, Phys. Rev. Lett. 89, 085003 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.085003
65.
65.I. Golovkin, R. Mancini, S. Louis, Y. Ochi, K. Fujita, H. Nishimura, H. Shirga, N. Miyanaga, H. Azechi, R. Butzbach, I. Uschmann, E. Forster, J. Delettrez, J. Koch, R. W. Lee, and L. Klein, Phys. Rev. Lett. 88, 045002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.045002
66.
66.L. Welser-Sherrill, R. C. Mancini, J. A. Koch, N. Izumi, R. Tommasini, S. W. Haan, D. A. Haynes, I. E. Golovkin, J. J. MacFarlane, J. A. Delettrez, F. J. Marshall, S. P. Regan, V. A. Smalyuk, and G. Kyrala, Phys. Rev. E 76, 056403 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.056403
67.
67.J. A. Koch, N. Izumi, L. A. Welser, R. C. Mancini, S. W. Haan, R. W. Lee, P. A. Amendt, T. W. Barbee, S. Dalhed, K. Fujita, I. E. Golovkin, L. Klein, O. L. Landen, F. J. Marshall, D. D. Meyerhofer, H. Nishimura, Y. Ochi, S. Regan, T. C. Sangster, V. Smalyuk, and R. Tommasini, High Energy Density Phys. 4, 1 (2008).
http://dx.doi.org/10.1016/j.hedp.2007.09.001
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/5/10.1063/1.3309722
Loading
/content/aip/journal/pop/17/5/10.1063/1.3309722
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/17/5/10.1063/1.3309722
2010-03-11
2015-08-01

Abstract

Applied spectroscopy is a powerful diagnostic tool for high energy density plasmas produced with modern pulsed power facilities. These facilities create unique plasma environments with a broad range of electron densities and temperatures immersed in strong magnetic and electric (up to 1 GV/m) fields. This paper surveys the application of plasma spectroscopy to diagnose a variety of plasma conditions generated by pulsed power sources including: magnetic field penetration into plasma, measuring the time-dependent spatial distribution of 1 GV/m electric fields, opacity measurements approaching stellar interior conditions, characteristics of a radiating shock propagating at 330 km/s, and determination of plasma conditions in imploded capsule cores at 150 Mbar pressures. These applications provide insight into fundamental properties of nature in addition to their importance for addressing challenging pulsed power science problems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/17/5/1.3309722.html;jsessionid=2l2ucqxxa87aa.x-aip-live-06?itemId=/content/aip/journal/pop/17/5/10.1063/1.3309722&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Applied spectroscopy in pulsed power plasmasa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/5/10.1063/1.3309722
10.1063/1.3309722
SEARCH_EXPAND_ITEM