1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spacecraft charging and ion wake formation in the near-Sun environment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/17/7/10.1063/1.3457484
1.
1.E. C. Whipple, Rep. Prog. Phys. 44, 1197 (1981).
http://dx.doi.org/10.1088/0034-4885/44/11/002
2.
2.H. B. Garrett, Rev. Geophys. Space Phys. 19, 577, doi:10.1029/RG019i004p00577 (1981).
http://dx.doi.org/10.1029/RG019i004p00577
3.
3.A. I. Eriksson, M. André, B. Klecker, H. Laakso, P. -A. Lindqvist, F. Mozer, G. Paschmann, A. Pedersen, J. Quinn, R. Torbert, R. K. Torkar, and H. Vaith, Ann. Geophys. 24, 275 (2006).
http://dx.doi.org/10.5194/angeo-24-275-2006
4.
4.A. Pedersen, Ann. Geophys. 13, 118 (1995).
http://dx.doi.org/10.1007/s00585-995-0118-8
5.
5.A. Pedersen, B. Lybekk, M. André, A. Eriksson, A. Masson, F. S. Mozer, P. -A. Lindqvist, P. M. E. Décréau, I. Dandouras, J. -A. Sauvaud, A. Fazakerley, M. Taylor, G. Paschmann, K. R. Svenes, K. Torkar, and E. Whipple, J. Geophys. Res. 113, A07S33, doi:10.1029/2007JA012636 (2008).
http://dx.doi.org/10.1029/2007JA012636
6.
6.V. Génot and S. J. Schwartz, Ann. Geophys. 22, 2073 (2004).
http://dx.doi.org/10.5194/angeo-22-2073-2004
7.
7.M. L. Adrian, Phys. Plasmas 9, 602 (2002).
http://dx.doi.org/10.1063/1.1415423
8.
8.U. Isensee, J. Geophys. 42, 581 (1977).
9.
9.U. Isensee and H. Maassberg, Adv. Space Res. 1, 413 (1981).
http://dx.doi.org/10.1016/0273-1177(81)90315-X
10.
10.E. Engwall, A. I. Eriksson, and J. Forest, Phys. Plasmas 13, 062904 (2006).
http://dx.doi.org/10.1063/1.2199207
11.
11.B. Thiébault, A. Hilgers, E. Sasot, H. Laakso, and P. Escoubet, J. Geophys. Res. 109, A12207, doi:10.1029/2004JA010398 (2004)
http://dx.doi.org/10.1029/2004JA010398
12.
12.C. P. Escoubet, A. Pedersen, R. Schmidt, and P. A. Lindqvist, J. Geophys. Res. 102, 17595, doi: 10.1029/97JA00290(1997).
http://dx.doi.org/10.1029/97JA00290
13.
13.R. Schmidt and A. Pedersen, Planet. Space Sci. 35, 61 (1987).
http://dx.doi.org/10.1016/0032-0633(87)90145-0
14.
14.H. Laakso, J. Atmos. Sol.-Terr. Phys. 64, 1735 (2002).
http://dx.doi.org/10.1016/S1364-6826(02)00123-2
15.
15.Y. Miyake and H. Usui, Phys. Plasmas 16, 062904 (2009)
http://dx.doi.org/10.1063/1.3147922
16.
16.Solar Probe Plus: Report of the Science and Technology Definition Team, NASA Technical Memorandum 214161, July (2008).
17.
17.‘‘Solar Orbiter assessment study report’’ (SRE-2009-5), European Space Agency, 2009.
18.
18.R. P. Lin, K. A. Anderson, S. Ashford, C. Carlson, D. Curtis, R. Ergun, D. Larson, J. McFadden, M. McCarthy, G. K. Parks, H. Rème, J. M. Bosqued, J. Coutelier, F. Cotin, C. D’uston, K. -P. Wenzel, T. R. Sanderson, J. Henrion, J. C. Ronnet, and G. Paschmann, Space Sci. Rev. 71, 125 (1995).
http://dx.doi.org/10.1007/BF00751328
19.
19.J. G. Laframboise and J. Luo, J. Geophys. Res. 94, 9033, doi:10.1029/JA094iA07p09033 (1989).
http://dx.doi.org/10.1029/JA094iA07p09033
20.
20.E. G. Mullen, M. S. Gussenhoven, D. A. Hardy, T. A. Aggson, B. G. Ledley, and E. Whipple, J. Geophys. Res. 91, 1474, doi:10.1029/JA091iA02p01474 (1986).
http://dx.doi.org/10.1029/JA091iA02p01474
21.
21.I. Katz, M. Mandell, G. Jongeward, and M. S. Gussenhoven, J. Geophys. Res. 91, 13739, doi:10.1029/JA091iA01p00013 (1986).
http://dx.doi.org/10.1029/JA091iA01p00013
22.
22.J. G. Laframboise and L. J. Sonmor, J. Geophys. Res. 98, 337, doi:10.1029/92JA00839 (1993).
http://dx.doi.org/10.1029/92JA00839
23.
23.S. T. Lai, J. Geophys. Res. 96, 19269, doi:10.1029/91JA01653 (1991).
http://dx.doi.org/10.1029/91JA01653
24.
24.R. L. Guernsey and J. H. M. Fu, J. Geophys. Res. 75, 3193, doi:10.1029/JA075i016p03193 (1970).
http://dx.doi.org/10.1029/JA075i016p03193
25.
25.J. -F. Roussel and J. -J. Berthelier, J. Geophys. Res. 109, A01104, doi:10.1029/2003JA009836 (2004)
http://dx.doi.org/10.1029/2003JA009836
26.
26.C. M. Cully, R. E. Ergun, and A. I. Eriksson, J. Geophys. Res. 112, A09211, doi:10.1029/2007JA012269 (2007)
http://dx.doi.org/10.1029/2007JA012269
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/7/10.1063/1.3457484
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The basic architecture of the Poisson/electron tracing code.

Image of FIG. 2.

Click to view

FIG. 2.

(a) A 3D rendering of the ion density surrounding a model of the Solar Probe Plus SC at 9.5 . is toward the Sun, is normal to the ecliptic plane, and completes the triad. The distances are in meters. The solar wind speed is 300 km/s in the direction and SC is traveling at 180 km/s in the direction. The plasma density is and the ion temperature is set at 82 eV. (b) The electron density: . The thermal electrons dominate except for a thin layer surrounding the SC. (c) The self-consistent potential . is . The potential well in the bottom left is created by the ion wake. A thin layer if negative potential is surrounding the SC; it is particularly strong on the sunward side of the SC. (d) The photoelectron and secondary electron densities. All but of the photoelectrons are reflected back to the SC. The ion wake prevents secondary electrons from escaping form the left side.

Image of FIG. 3.

Click to view

FIG. 3.

A 3D, cylindrically symmetric solution of a cylindrically shaped SC at 9.5 . The photoemission and electron distribution mimic the solar wind at 9.5 , but the ion density is fixed. (a) surrounding the SC. is −0.85 V. A negative potential envelops the surface of the SC and a barrier is formed at . The structure from the SC comes from a loss of thermal electron density due to partial physical shielding by the SC. (b) The photoelectron and secondary electron densities. A thin layer of high electron density surrounds the SC.

Image of FIG. 4.

Click to view

FIG. 4.

(a) A line plot of along the axis of the solution derived from Fig. 3(a). The potential of the SC is −0.85 V. A −6 V (with respect to ) electrostatic barrier forms at . A smaller barrier is seen at . (b) The electron densities along the axis. The lines are labeled on the plot. The vertical dashed lines indicate the top and bottom surfaces of the SC.

Image of FIG. 5.

Click to view

FIG. 5.

(a) The ion density. A wake is on the side of the SC. The ion temperature is zero. (b) The thermal electron density. (c) The self-consistent solution of . (d) The photoelectron and secondary electron densities. Secondary electrons cannot escape from the bottom of the SC.

Image of FIG. 6.

Click to view

FIG. 6.

The solution under conditions four times farther from the Sun. , , and the photoelectron yield is reduced by a factor of 16, to . (a) . The SC is at 2.9 V. (b) The photoelectron and secondary electron densities.

Image of FIG. 7.

Click to view

FIG. 7.

The solution of a scaled model (1/4 size) with the same conditions as in Fig. 5. , , and the photoelectron yield is . The SC is 0.25 m in radius and 0.5 m long. The solution’s domain is 1/4 size as well. (a) . The SC is at 0.3 V. (b) The photoelectron and secondary electron densities.

Tables

Generic image for table

Click to view

Table I.

Currents to SC.

Generic image for table

Click to view

Table II.

Currents to SC.

Loading

Article metrics loading...

/content/aip/journal/pop/17/7/10.1063/1.3457484
2010-07-19
2014-04-24

Abstract

A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft’s negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/17/7/1.3457484.html;jsessionid=2ipdn93vlu737.x-aip-live-01?itemId=/content/aip/journal/pop/17/7/10.1063/1.3457484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spacecraft charging and ion wake formation in the near-Sun environment
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/7/10.1063/1.3457484
10.1063/1.3457484
SEARCH_EXPAND_ITEM