1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/17/7/10.1063/1.3457484
1.
1.E. C. Whipple, Rep. Prog. Phys. 44, 1197 (1981).
http://dx.doi.org/10.1088/0034-4885/44/11/002
2.
2.H. B. Garrett, Rev. Geophys. Space Phys. 19, 577, doi:10.1029/RG019i004p00577 (1981).
http://dx.doi.org/10.1029/RG019i004p00577
3.
3.A. I. Eriksson, M. André, B. Klecker, H. Laakso, P. -A. Lindqvist, F. Mozer, G. Paschmann, A. Pedersen, J. Quinn, R. Torbert, R. K. Torkar, and H. Vaith, Ann. Geophys. 24, 275 (2006).
http://dx.doi.org/10.5194/angeo-24-275-2006
4.
4.A. Pedersen, Ann. Geophys. 13, 118 (1995).
http://dx.doi.org/10.1007/s00585-995-0118-8
5.
5.A. Pedersen, B. Lybekk, M. André, A. Eriksson, A. Masson, F. S. Mozer, P. -A. Lindqvist, P. M. E. Décréau, I. Dandouras, J. -A. Sauvaud, A. Fazakerley, M. Taylor, G. Paschmann, K. R. Svenes, K. Torkar, and E. Whipple, J. Geophys. Res. 113, A07S33, doi:10.1029/2007JA012636 (2008).
http://dx.doi.org/10.1029/2007JA012636
6.
6.V. Génot and S. J. Schwartz, Ann. Geophys. 22, 2073 (2004).
http://dx.doi.org/10.5194/angeo-22-2073-2004
7.
7.M. L. Adrian, Phys. Plasmas 9, 602 (2002).
http://dx.doi.org/10.1063/1.1415423
8.
8.U. Isensee, J. Geophys. 42, 581 (1977).
9.
9.U. Isensee and H. Maassberg, Adv. Space Res. 1, 413 (1981).
http://dx.doi.org/10.1016/0273-1177(81)90315-X
10.
10.E. Engwall, A. I. Eriksson, and J. Forest, Phys. Plasmas 13, 062904 (2006).
http://dx.doi.org/10.1063/1.2199207
11.
11.B. Thiébault, A. Hilgers, E. Sasot, H. Laakso, and P. Escoubet, J. Geophys. Res. 109, A12207, doi:10.1029/2004JA010398 (2004)
http://dx.doi.org/10.1029/2004JA010398
12.
12.C. P. Escoubet, A. Pedersen, R. Schmidt, and P. A. Lindqvist, J. Geophys. Res. 102, 17595, doi: 10.1029/97JA00290(1997).
http://dx.doi.org/10.1029/97JA00290
13.
13.R. Schmidt and A. Pedersen, Planet. Space Sci. 35, 61 (1987).
http://dx.doi.org/10.1016/0032-0633(87)90145-0
14.
14.H. Laakso, J. Atmos. Sol.-Terr. Phys. 64, 1735 (2002).
http://dx.doi.org/10.1016/S1364-6826(02)00123-2
15.
15.Y. Miyake and H. Usui, Phys. Plasmas 16, 062904 (2009)
http://dx.doi.org/10.1063/1.3147922
16.
16.Solar Probe Plus: Report of the Science and Technology Definition Team, NASA Technical Memorandum 214161, July (2008).
17.
17.‘‘Solar Orbiter assessment study report’’ (SRE-2009-5), European Space Agency, 2009.
18.
18.R. P. Lin, K. A. Anderson, S. Ashford, C. Carlson, D. Curtis, R. Ergun, D. Larson, J. McFadden, M. McCarthy, G. K. Parks, H. Rème, J. M. Bosqued, J. Coutelier, F. Cotin, C. D’uston, K. -P. Wenzel, T. R. Sanderson, J. Henrion, J. C. Ronnet, and G. Paschmann, Space Sci. Rev. 71, 125 (1995).
http://dx.doi.org/10.1007/BF00751328
19.
19.J. G. Laframboise and J. Luo, J. Geophys. Res. 94, 9033, doi:10.1029/JA094iA07p09033 (1989).
http://dx.doi.org/10.1029/JA094iA07p09033
20.
20.E. G. Mullen, M. S. Gussenhoven, D. A. Hardy, T. A. Aggson, B. G. Ledley, and E. Whipple, J. Geophys. Res. 91, 1474, doi:10.1029/JA091iA02p01474 (1986).
http://dx.doi.org/10.1029/JA091iA02p01474
21.
21.I. Katz, M. Mandell, G. Jongeward, and M. S. Gussenhoven, J. Geophys. Res. 91, 13739, doi:10.1029/JA091iA01p00013 (1986).
http://dx.doi.org/10.1029/JA091iA01p00013
22.
22.J. G. Laframboise and L. J. Sonmor, J. Geophys. Res. 98, 337, doi:10.1029/92JA00839 (1993).
http://dx.doi.org/10.1029/92JA00839
23.
23.S. T. Lai, J. Geophys. Res. 96, 19269, doi:10.1029/91JA01653 (1991).
http://dx.doi.org/10.1029/91JA01653
24.
24.R. L. Guernsey and J. H. M. Fu, J. Geophys. Res. 75, 3193, doi:10.1029/JA075i016p03193 (1970).
http://dx.doi.org/10.1029/JA075i016p03193
25.
25.J. -F. Roussel and J. -J. Berthelier, J. Geophys. Res. 109, A01104, doi:10.1029/2003JA009836 (2004)
http://dx.doi.org/10.1029/2003JA009836
26.
26.C. M. Cully, R. E. Ergun, and A. I. Eriksson, J. Geophys. Res. 112, A09211, doi:10.1029/2007JA012269 (2007)
http://dx.doi.org/10.1029/2007JA012269
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/7/10.1063/1.3457484
Loading
/content/aip/journal/pop/17/7/10.1063/1.3457484
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/17/7/10.1063/1.3457484
2010-07-19
2015-08-04

Abstract

A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft’s negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/17/7/1.3457484.html;jsessionid=1g7dnvdeavn2o.x-aip-live-06?itemId=/content/aip/journal/pop/17/7/10.1063/1.3457484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spacecraft charging and ion wake formation in the near-Sun environment
http://aip.metastore.ingenta.com/content/aip/journal/pop/17/7/10.1063/1.3457484
10.1063/1.3457484
SEARCH_EXPAND_ITEM