Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Silin, J. Buchner, and A. Vaivads, Phys. Plasmas 12, 062902 (2005) and references therein.
2. J. F. Drake, M. Swisdak, C. Cattell, M. A. Shay, B. N. Rogers, and A. Zeiler, Science 299, 7 (2003).
3. H. Che, J. F. Drake, and M. Swisdak, Nature (London) 474, 184 (2011).
4. J. D. Scudder, X. Cao, and F. S. Mozer, J. Geophys. Res. 105, A9, doi:10.1029/1999JA900423 (2000).
5. V. Angelopoulos, D. Sibeck, C. W. Carlson, J. P. McFadden, D. Larson, R. P. Lin, J. W. Bonnell, F. S. Mozer, R. Ergun, C. Cully, K. H. Glassmeier, U. Auster, A. Roux, O. LeContel, S. Frey, T. Phan, S. Mende, H. Frey, E. Donovan, C. T. Russell, R. Strangeway, J. Liu, I. Mann, J. Rae, J. Raeder, X. Li, W. Liu, H. J. Singer, V. A. Sergeev, S. Apatenkov, G. Parks, M. Fillingim, and J. Sigwarth, Space Sci. Rev. 141(1–4), 453 (2008).
6. F. S. Mozer, P. L. Pritchett, J. Bonnell, D. Sundkvist, and M. T. Chang, J. Geophys. Res. 113, A00C03, doi:10.1029/2008JA013535 (2008).
7. C. Torrence and G. P. Compo, Bull. Am. Meteorol. Soc. 79, 61 (1998).<0061:APGTWA>2.0.CO;2
8. F. S. Mozer and P. L. Pritchett, Geophys. Res. Lett. 36, L07102, doi:10.1029/2009GL037463 (2009).
9. S. D. Bale, F. S. Mozer, and T. Phan, Geophys. Res. Lett. 29(24), 2180, doi:10.1103/PhysRevLett.89.015002 (2002).
10. A. L. Verdon, I. H. Cairns, D. B. Melrose, and P. A. Robinson, Phys. Plasmas 16, 052105 (2009).
11. P. Yoon, A. T. Y. Lui, and M. I. Sitnov, Phys. Plasmas 9, 1526 (2002).
12. W. Daughton, G. Lapenta, and P. Ricci, Phys. Rev. Lett. 93, 105004 (2004).
13. W. Daughton, Phys. Plasmas 10, 3103 (2003).
14. H. Ji, S. Terry, M. Yamada, R. Kulsrud, A. Kuritsyn, and Y. Ren, Phys. Rev. Lett. 92, 115001 (2004).
15. R. L. Stenzel, Phys. Rev. Lett. 38(3), 394 (1977).

Data & Media loading...


Article metrics loading...



The anomalous drag, D, due to large amplitude plasma waves is used for the first time, in place of η*j, to estimate dissipation at the sub-solar magnetopause and to determine the extent to which this drag accounts for the reconnectionelectric field. This anomalous drag is determined by measuring correlations of the fluctuations in the electric field and plasma density. Large amplitude electric fields occurred more than 60% of the time in the more than 100 sub-solar, low latitude magnetopause crossings of the THEMIS satellite. They occurred mainly near the magnetospheric separatrix in the form of electrostatic lower hybrid and whistler waves. The anomalous drag at the separatrix was generally <10% of the average reconnectionelectric field, and it was <1% of the field in the current sheet. Thus, anomalous drag due to waves is not a significant driver of reconnection or of the required dissipation at the sub-solar magnetopause.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd