1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/11/10.1063/1.3657421
1.
1. M. G. Mazarakis, M. E. Cuneo, W. A. Stygar, H. C. Harjes, D. B. Sinard, B. M. Jones, C. Deeney, E. M. Waisman, T. J. Nash, K. W. Struve, and D. H. McDaniel, Phys. Rev. E 79, 016412 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016412
2.
2. T. W. L. Sanford, G. O. Allshouse, B. M. M. Marder, T. J. Nash, R. C. Mock, R. B. Spielman, J. F. Seamen, J. S. McGurn, D. Jobe, T. L. Gilliland, M. Vargas, K. M. Struve, W. A. Stygar, M. R. Douglas, M. K. Matzen, J. H. Hammer, J. S. De Groot, J. L. Eddleman, D. L. Peterson, D. Mosher, K. G. Whitney, and J. W. Thornhill, Phys. Rev. Lett. 77, 5063 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.5063
3.
3. D. D. Bloomquist, R. W. Stinnett, D. H. McDaniel, J. R. Lee, A. W. Sharpe, J. A. Halbleib, L. G. Schlitt, P. W. Spence, and P. Corcoran, in Proceedings of the 6th IEEE Pulsed Power Conference, Arlington, VA, edited by B. H. Bernstein and P. J. Turchi (IEEE, New York, 1987), IEEE Cat. No. 87CH2522-1, p. 310.
4.
4. C. A. Coverdale, C Deeney, M. R. Douglas, J. P. Apruzese, K. G. Whitney, J. W. Thornhill, and J. Davis, Phys. Rev. Lett. 88(6), 065001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.065001
5.
5. M. G. Mazarakis, C. E. Deeney, M. R. Douglas, W. A. Stygar, D. B. Sinars, M. E. Cuneo, J. Chittenden, G. A. Chandler, T. J. Nash, K. W. Struve, and D. H. McDaniel, Plasma Devices Oper. 13, 157 (2005).
http://dx.doi.org/10.1080/10519990500058339
6.
6. R. B. Spielman, W. A. Stygar, J. F. Seamen, F. Long, H. Ives, R. Garcia, T. Wagoner, K. W. Struve, M. Mostrom, I. Smith, P. Spence, and P. Corcoran, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 709.
7.
7. P. A. Corcoran, J. W. Douglas, I. D. Smith, P. W. Spence, W. A. Stygar, K. W. Struve, T. H. Martin, R. B. Spielman, and H. C. Ives, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 466.
8.
8. R. J. Garcia, H. C. Ives, K. W. Struve, R. B. Spielman, T. H. Martin, M. L. Horry, R. Waverick, and T. F. Jaramillo, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 1614.
9.
9. H. C. Ives, D. M. Van De Valde, F. W. Long, J. W. Smith, R. B. Spielman, W. A. Stygar, R. W. Wavrik, and R. W. Shoup, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 1602.
10.
10. M. A. Mostrom, T. P. Hughes, R. E. Clark, W. A. Stygar, and R. B. Spielman, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 460.
11.
11. R. W. Shoup, F. Long, T. H. Martin, R. B. Spielman, W. A. Stygar, M. A. Mostrom, K. W. Struve, H. Ives, P. Corcoran, and I. Smith, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 1608.
12.
12. I. D. Smith, P. A. Corcoran, W. A. Stygar, T. H. Martin, R. B. Spielman, and R. W. Shoup, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 168.
13.
13. K. W. Struve, T. H. Martin, R. B. Spielman, W. A. Stygar, P. A. Corcoran, and J. W. Douglas, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 162.
14.
14. W. A. Stygar, R. B. Spielman, G. O. Allshouse, C. Deeney, D. R. Humphreys, H. C. Ives, F. W. Long, T. H. Martin, M. K. Matzen, D. H. McDaniel, C. W. Mendel, Jr., L. P. Mix, T. J. Nash, J. W. Poukey, J. J. Ramirez, T. W. L. Sanford, J. F. Seamen, D. B. Seidel, J. W. Smith, D. M. Van DeValde, R. W. Wavrik, P. A. Corcoran, J. W. Douglas, I. D. Smith, M. A. Mostrom, K. W. Struve, T. P. Hughes, R. E. Clark, R. W. Shoup, T. C. Wagoner, T. L. Gilliland, and B. P. Peyton, in Proceedings of the 11th IEEE International Pulsed Power Conference, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), IEEE Cat. No. 97CH36127, p. 591.
15.
15. D. B. Sinars, R. W. Lembe, M. E. Cuneo, S. V. Lebedev, E. M. Waisman, W. A. Stygar, B. Jones, M C. Jones, E. P. Yu, J. L. Porter, and D. F. Wenger, Phys. Rev. Lett. 100, 145002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.145002
16.
16. M. E. Cuneo, private communication (2008).
17.
17. M. G. Mazarakis, M. E. Cuneo, W. A. Stygar, H. C. Harjes, D. B. Sinars, C. Deeney, E. M. Waisman, T. J. Nassh, K. W. Struve, and D. H. McDaniel, Phys. Rev. E 79, 016412 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016412
18.
18. W. A. Stygar, H. C. Ives, D. L. Fehl, M. E. Cuneo, M. G. Mazarakis, J. E. Bailey, G. R. Bennett, D. E. Bliss, G. A. Chandler, R. J. Leeper, M. K , Matzen, D. H. McDaniel, J. S. McGurn, J. L. McKenney, L. P. Mix, D. J. Muron, J. L. Porter, J. J. Ramirez, L. E. Ruggles, J. F. Seamen, W. W. Simpson, C. S. Speas, R. B. Spielman, K. W. Struve, J. A. Torres, R. A. Vesey, T. C. Wagoner, T. L. Gilliland, M. L. Horry, D. O. Jobe, S. E. Lazier, J. A. Mills, T. D. Mulville, J. H. Pyle, T. M. Romero, J. J. Seamen, and R. M. Smelser, Phys. Rev. E 69, 046403 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.046403
19.
19. G. A. Chandler, C. Deeney, M. Cuneo, D. L. Fehl, J. S. McGurn, R. B. Spielman, J. A. Torres, J. L. McKenney, J. Mills, and K. W. Struve, Rev. Sci. Instrum. 70, 561 (1999).
http://dx.doi.org/10.1063/1.1149355
20.
20. R. B. Spielman, C. Deeney, D. L. Fehl, D. L. Hanson, N. R. Keltner, J. S. McGurn, and J. L. McKenney, Rev. Sci. Instrum. 70, 651 (1999).
http://dx.doi.org/10.1063/1.1149488
21.
21. D. L. Fehl, D. J. Muron, R. J. Leeper, G. A. Chandler, C. Deeney, W. A. Stygar, and R. B. Spielman, Rev. Sci. Instrum. 70, 270 (1999).
http://dx.doi.org/10.1063/1.1149515
22.
22. D. L. Fehl, W. A. Stygar, G. A. Chandler, M. E. Cuneo, and C. L. Ruiz, Rev. Sci. Instrum. 76, 103504 (2005).
http://dx.doi.org/10.1063/1.2090468
23.
23. T. Nash, M. Derzon, R. Leeper, D. Jobe, M. Hurst, and J. Seamen, Rev. Sci. Instrum. 70, 302 (1999).
http://dx.doi.org/10.1063/1.1149502
24.
24. T. J. Nash, M. S. Derzon, G. A. Chandler, D. Fehl, R. Leeper, M. Hurst, D. Jobe, J. Torres, J. Seamen, S. Lazier, T. Gilliland, and J. McGurn, Rev. Sci. Instrum. 70, 464 (1999).
http://dx.doi.org/10.1063/1.1149308
25.
25. M. L. Kiefer, K. L. Fugelso, K. W. Struve, and M. M. Widner, “SCREAMER, A Pulsed Power Design Tool,” User’s Guide for Version 2.0, Sandia National Laboratory, 1995.
26.
26. J. P. Chittenden, S. V. Lebedev, C. A. Jennings, S. N. Bland, and A. Ciardi, Plasma Phys. Controlled Fusion 46, 1 (2004).
http://dx.doi.org/10.1088/0741-3335/46/12B/039
27.
27. M. G. Haines, IEEE Trans. Plasma Sci. 26, 1275 (1998).
http://dx.doi.org/10.1109/27.725160
28.
28. J. Ruiz-Camacho, F. N. Beg, A. E. Dangor, M. G. Haines, E. L. Clark, and I. Ross, Phys. Plasmas 6, 2579 (1999).
http://dx.doi.org/10.1063/1.873529
29.
29. T. A. Shelkovenko, S. A. Pikuz, J. D. Douglass, I. C. Blesener, J. B. Greenly, R. D. McBride, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 14, 102702 (2007).
http://dx.doi.org/10.1063/1.2786859
30.
30. J. Katzenstein, J. Appl. Phys. 52, 676 (1981).
http://dx.doi.org/10.1063/1.328795
31.
31. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenkob, Phys. Plasmas 8, 3734 (2001).
http://dx.doi.org/10.1063/1.1385373
32.
32. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, S. A. Pikuz, and T. A. Shelkovenkob, Phys. Rev. Lett. 85, 98 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.98
33.
33. D. B. Sinars, T. A. Shelkovenko, S. A. Pikuz, J. B. Greenly, and D. A. Hammer, Phys. Plasmas 7, 1555 (2000).
http://dx.doi.org/10.1063/1.873975
34.
34. D. B. Sinars, M. Hu, K. M. Chandler, T. A. Shelkovenko, S. A. Pikuz, J. B. Greenly, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 8, 216 (2001).
http://dx.doi.org/10.1063/1.1323759
35.
35. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, and M. G. Haines, Phys. Plasmas 9, 2293 (2002).
http://dx.doi.org/10.1063/1.1466466
36.
36. D. B. Sinars, M. E. Cuneo, G. R. Bennett, D. W. Wenger, L. E. Ruggles, M. F. Vargas, J. L. Porter, R. G. Adams, D. W. Johnson, K. L. Keller, P. K. Rambo, D. C. Rovang, H. Seamen, W. W. Simpson, I. C. Smith, and S. C. Speas, Rev. Sci. Instrum. 74, 2202 (2003).
http://dx.doi.org/10.1063/1.1537853
37.
37. J. P. Chittenden, S. V. Lebedev, B. V. Oliver, E. P. Yu, and M. E. Cuneo, Phys. Plasmas 11, 1118 (2004).
http://dx.doi.org/10.1063/1.1643756
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/11/10.1063/1.3657421
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color) Side section of the load design and the final coaxial self-magnetic insulated transmission line (MITL) that transfers the total generator current into the load.

Image of FIG. 2.

Click to view

FIG. 2.

(Color) (a) X-ray pulse waveforms and load currents for two (30 and 450) representative wire numbers. SCREAMER circuit code simulation results are also shown for time comparison. (b) X-ray radiation pulse for 30 and 450 wire arrays shown in an enlarged time base for clarity. Both wire arrays pinch later than the OD prediction of the SCREAMER circuit code simulation.

Image of FIG. 3.

Click to view

FIG. 3.

(Color) (a) Overlay of the x-ray power pulses for most of the arrays studied. (b) Time differences of the time to peak power (tPeak) and of zero crossing time (tPo) from the ideal OD minimum radius time (tRmin) which is equal to the time in the OD calculations that the array reaches the minimum (here 1 mm) preset radius.

Image of FIG. 4.

Click to view

FIG. 4.

(Color) (a) X-ray peak power (XRPOWER) measurements for all the inter-wire gaps studied. An IWG range between 0.104 mm and 2.09 mm was covered. (b) X-ray power measured for the smaller IWG between 0.104 mm and 0.6 mm.

Image of FIG. 5.

Click to view

FIG. 5.

(Color) X-ray (XRPOWER) peak power results as a function of array wire number.

Image of FIG. 6.

Click to view

FIG. 6.

(Color) (a) Measurements of the 10%–90% x-ray-power rise time as a function of the array IWG. (b) Rise time measurements for the smaller IWG studied in order to put into evidence the optimum IWG.

Image of FIG. 7.

Click to view

FIG. 7.

(Color) (a) Comparison of our peak x-ray power results with the first aluminum measurements2 (b). The critical inter-wire gap for aluminum is at 1.4 mm. The tungsten critical gap is 4.5 times smaller.

Image of FIG. 8.

Click to view

FIG. 8.

(Color) Comparison of the rise time results of Ref. 4 (a) for aluminum with our tungsten results (b). Both experiments show an optimum IWG where the rise time becomes minimum.

Image of FIG. 9.

Click to view

FIG. 9.

(Color) Measurements of the total radiated x-ray energy (XENERGY) as a function of the IWG (a) and the wire number (b). The total radiated x-ray energy seems to follow the same dependence on the wire number as the peak power and the rise time. There is an optimum again at the same number of wires (∼375 ± 25), and the total energy drastically decreases at larger as well as at smaller wire numbers.

Image of FIG. 10.

Click to view

FIG. 10.

(Color) (a) X-ray images of the entire pinch length around pinch time. The plasma size at stagnation was measured with time-resolved framing cameras that provided images with inter-frame separation of 2 ns. The wire number of the array was 500. The top frames are exposed to the entire x-ray spectrum. Only a very thin filter was placed in front of the camera aperture in order to essentially cut off the visible light from striking the micro-channel plates. The bottom series of frames correspond to the harder x-ray spectrum above 200 eV. (b) The axially averaged radial extent of the pinch plasma is shown as a function of machine time (red line with error bars) superimposed on the x-ray radiation pulse (light blue trace, arbitrary units). The numbered negative small pulses (arbitrary units) indicate the time that each frame of (a) was triggered.

Image of FIG. 11.

Click to view

FIG. 11.

(Color) Stagnated axially integrated plasma diameter for a number of wire arrays studied. The measurements were done with side framing x-ray cameras observing the entire length of the pinch. Both the total (red color) and hard spectrum (blue color) plasma sizes are presented. (a) Pinch plasma diameter versus IWG. (b) Pinch plasma diameter versus wire number.

Image of FIG. 12.

Click to view

FIG. 12.

(Color) Pictures of precursor plasma arriving on axis for a 50 wire array. Both top axial cameras (number 1 and number 2) were triggered much earlier than pinch times (−47.4 ns and −42.9 ns). There are two frames per time interval; the frames of the first left column and the fourth right column record practically all the x-ray spectrum (soft), while the frames of the two middle columns (hard) record the hard x-rays above 200 eV component.

Image of FIG. 13.

Click to view

FIG. 13.

(Color) Radial line-outs of the intensity of the soft and hard x-ray frames of camera 2 (Fig. 12). The colored numbers are the timing of each frame relative to pinch time which is taken as “0” time.

Image of FIG. 14.

Click to view

FIG. 14.

(Color) (a) demonstrates how we estimated the precursor arrival on axis for 30, 50, and 90 wire arrays. (a) is for a 30 wire array. The graph is raw data in Volts as obtained by a very sensitive channel of the XRD monitor scope (XRDOA1KM). We estimate an approximate time of 43 ± 4 ns of precursor arrival on axis. Since the array radius is 1 cm, we estimate a precursor velocity of ∼2 ± 0.2 × 107 cm/s. This of course is the time when enough precursor plasma is gathered on axis to produce detectable x-ray radiation. Optical measurements may give even earlier arrivals. (b) Precursor arrival times for 30, 50, and 90 wire arrays.

Image of FIG. 15.

Click to view

FIG. 15.

(Color) Times of observed on axis two x-ray radiation power levels (0.1 TW and 1 TW) as a function of wire number (a) and IWG (b).

Image of FIG. 16.

Click to view

FIG. 16.

(Color) Orientation of side framing cameras number 1 and 2. (a) Orientation of the cameras (side view). (b) Orientation of the cameras (top view).

Image of FIG. 17.

Click to view

FIG. 17.

(Color) Framing pictures taken with camera number 1. (a) Four frames taken with slightly different filters. The wire array had 50 wires. (b) Axially averaged radial line-out scan of the picture of the first frame. (c) Radially averaged axial line-out of the same frame.

Image of FIG. 18.

Click to view

FIG. 18.

(Color) The single “wire” and total axial line up of the first (a) and fourth (b) frames of Fig. 17 show evolution in axial modulation. The approximate wave-length is 1 mm.

Image of FIG. 19.

Click to view

FIG. 19.

(Color) Frames obtained with camera number 2 (30 wire array). (a) Frames obtained with the “soft filter.” (b) Frames obtained with the “hard filter.” The camera was triggered 35 ns before pinch and took pictures every 10 ns.

Image of FIG. 20.

Click to view

FIG. 20.

(Color) ∼5 keV back-lighter35 transmission images. 30 wire array edge transmission picture at −39 ns. Similar 600 wire picture at −32 ns.

Image of FIG. 21.

Click to view

FIG. 21.

(Color) Comparison of the framing camera derived locations of the 30 and 50 wire array cores at a number of times into the driving pulse with OD and 2D trajectories.37

Image of FIG. 22.

Click to view

FIG. 22.

(Color) (a) Axial framing camera picture for the hard (two middle columns of pictures and the soft (two outside columns) x-ray spectra around pinch times. The wire array had 300 wires. (b) Radial intensity line-ups (hard x-ray spectrum). The colored numbers are the timing of each frame relative to pinch time which is taken as “0” time.

Image of FIG. 23.

Click to view

FIG. 23.

(Color) Cluster structures of stagnated plasmas. Selected frames of Fig. 22.

Image of FIG. 24.

Click to view

FIG. 24.

(Color) 2D simulations of orbit trajectories for different wire number arrays. Radii are those of the density maximum near the edge of the plasma as a function of time for the 50, 300, and 600 wires.

Image of FIG. 25.

Click to view

FIG. 25.

(Color) Contours of the logarithm of mass density for the 30 and 300 wire simulations at −90 ns, −40 ns, and −30 ns before pinch times as well as profiles of the azimuthally integrated mass density versus radius.

Tables

Generic image for table

Click to view

Table I.

Summary of load parameters.

Generic image for table

Click to view

Table II.

Comparison of aluminum and tungsten critical and optimum interwire gaps (IWG).

Loading

Article metrics loading...

/content/aip/journal/pop/18/11/10.1063/1.3657421
2011-11-14
2014-04-19

Abstract

We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to ∼5.8 mg. The driver utilized was the ∼20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day’s technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of ∼375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/11/1.3657421.html;jsessionid=2tsm1or8g1wkb.x-aip-live-02?itemId=/content/aip/journal/pop/18/11/10.1063/1.3657421&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/11/10.1063/1.3657421
10.1063/1.3657421
SEARCH_EXPAND_ITEM