1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners a)
a)Paper UI3 3, Bull. Am. Phys. Soc. 55, 332 (2010).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/5/10.1063/1.3560911
1.
1. D. B. Sinars, S. A. Slutz, M. C. Herrmann, R. D. McBride, M. E. Cuneo, K. J. Peterson, R. A. Vesey, C. Nakhleh, B. E. Blue, K. Killebrew, D. Schroen, K. Tomlinson, A. D. Edens, M. R. Lopez, I. C. Smith, J. Shores, V. Bigman, G. R. Bennett, B. W. Atherton, M. Savage, W. A. Stygar, G. T. Leifeste, and J. L. Porter, Phys. Rev. Lett. 105, 185001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.185001
2.
2. E. G. Harris, Phys. Fluids 5, 1057 (1962).
http://dx.doi.org/10.1063/1.1724473
3.
3. E. Ott, Phys. Rev. Lett. 29, 1429 (1972).
http://dx.doi.org/10.1103/PhysRevLett.29.1429
4.
4. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.167
5.
5. A. R. Miles, Phys. Plasmas 16, 032702 (2009).
http://dx.doi.org/10.1063/1.3088020
6.
6. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).
http://dx.doi.org/10.1063/1.3333505
7.
7. T. J. Nash, D. H. McDaniel, R. J. Leeper, C. D. Deeney, T. W. L. Sanford, K. Struve, and J. S. DeGroot, Phys. Plasmas 12, 052705 (2005).
http://dx.doi.org/10.1063/1.1890945
8.
8. B. Jones, C. Deeney, J. L. McKenney, C. J. Garasi, T. A. Mehlhorn, A. C. Robinson, S. E. Wunsch, S. N. Bland, S. V. Lebedev, J. P. Chittenden, S. C. Bott, D. J. Ampleford, J. B. A. Palmer, J. Rapley, G. N. Hall, and B. V. Oliver, Phys. Rev. Lett. 95, 225001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.225001
9.
9. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 8, 3734 (2001).
http://dx.doi.org/10.1063/1.1385373
10.
10. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, W. W. Simpson, L. E. Ruggles, D. F. Wenger, C. J. Garasi, B. V. Oliver, R. A. Aragon, W. E. Fowler, M. C. Hettrick, G. C. Idzorek, D. Johnson, K. Keller, S. E. Lazier, J. S. McGurn, T. A. Mehlhorn, T. Moore, D. S. Nielsen, J. Pyle, S. Speas, K. W. Struve, and J. A. Torres, Phys. Rev. E 71, 046406 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.046406
11.
11. D. B. Sinars, M. E. Cuneo, E. P. Yu, D. E. Bliss, T. J. Nash, J. L. Porter, C. Deeney, M. G. Mazarakis, G. S. Sarkisov, and D. F. Wenger, Phys. Rev. Lett. 93, 145002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.145002
12.
12. R. E. Reinovsky, W. E. Anderson, W. L. Atchison, C. E. Ekdahl, R. J. Faehl, I. R. Lindemuth, D. V. Morgan, M. Murillo, J. L. Stokes, and J. S. Shlachter, IEEE Trans. Plasma Sci. 30, 1764 (2002).
http://dx.doi.org/10.1109/TPS.2002.805418
13.
13. G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975).
14.
14. M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001).
http://dx.doi.org/10.1063/1.1356740
15.
15. J. P. Chittenden, S. V. Lebedev, C. A. Jennings, S. N. Bland, and A. Ciardi, Plasma Phys. Control. Fusion 46, B457 (2004).
http://dx.doi.org/10.1088/0741-3335/46/12B/039
16.
16. C. A. Jennings, M. E. Cuneo, E. M. Waisman, D. B. Sinars, D. J. Ampleford, G. R. Bennett, W. A. Stygar, and J. P. Chittenden, Phys. Plasmas 17, 092703 (2010).
http://dx.doi.org/10.1063/1.3474947
17.
17. E. M. Waisman and M. E. Cuneo, Phys. Rev. ST Accel. Beams 12, 090401 (2009).
http://dx.doi.org/10.1103/PhysRevSTAB.12.090401
18.
18. T. C. Wagoner, W. A. Stygar, H. C. Ives, T. L. Gilliland, R. B. Spielman, M. F. Johnson, P. G. Reynolds, J. K. Moore, R. L. Mourning, D. L. Fehl, K. E. Androlewicz, J. E. Bailey, R. S. Broyles, T. A. Dinwoodie, G. L. Donovan, M. E. Dudley, K. D. Hahn, A. A. Kim, J. R. Lee, R. J. Leeper, G. T. Leifeste, J. A. Melville, J. A. Mills, L. P. Mix, W. B. S. Moore, B. P. Peyton, J. L. Porter, G. A. Rochau, G. E. Rochau, M. E. Savage, J. F. Seamen, J. D. Serrano, A. W. Sharpe, R. W. Shoup, J. S. Slopek, C. S. Speas, K. W. Struve, D. M. V. D. Valde, and R. M. Woodring, Phys. Rev. ST Accel. Beams 11, 100401 (2008).
http://dx.doi.org/10.1103/PhysRevSTAB.11.100401
19.
19. G. R. Bennett, I. C. Smith, J. E. Shores, D. B. Sinars, G. Robertson, B. W. Atherton, M. C. Jones, and J. L. Porter, Rev. Sci. Instrum. 79, 10E914 (2008).
http://dx.doi.org/10.1063/1.2956823
20.
20. D. B. Sinars, G. R. Bennett, D. F. Wenger, M. E. Cuneo, D. L. Hanson, J. L. Porter, R. G. Adams, P. K. Rambo, D. C. Rovang, and I. C. Smith, Rev. Sci. Instrum. 75, 3672 (2004).
http://dx.doi.org/10.1063/1.1779607
21.
21. G. I. Kerley, Int. J. Impact Eng. 5, 441 (1987).
http://dx.doi.org/10.1016/0734-743X(87)90059-5
22.
22. Y. T. Lee and R. M. Moore, Phys. Fluids 27, 1273 (1984).
http://dx.doi.org/10.1063/1.864744
23.
23. M. P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).
http://dx.doi.org/10.1002/1521-3986(200103)41:2/3<>1.0.CO;2-5
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3560911
Loading
/content/aip/journal/pop/18/5/10.1063/1.3560911
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/5/10.1063/1.3560911
2011-04-07
2014-07-29

Abstract

A recent publication [D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)] describes the first controlled experiments measuring the growth of the magneto-Rayleigh–Taylor instability in fast (∼100 ns) Z-pinch plasmas formed from initially solid aluminum tubes (liners). Sinusoidal perturbations on the surface of these liners with wavelengths of 25–400 μm were used to seed single-mode instabilities. The evolution of the outer liner surface was captured using multiframe 6.151 keV radiography. The initial paper shows that there is good agreement between the data and 2-D radiation magneto-hydrodynamic simulations down to 50 μm wavelengths. This paper extends the previous one by providing more detailed radiography images, detailed target characterization data, a more accurate comparison to analytic models for the amplitude growth, the first data from a beryllium liner, and comparisons between the data and 3D simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/5/1.3560911.html;jsessionid=1ifo5hkqu9g67.x-aip-live-03?itemId=/content/aip/journal/pop/18/5/10.1063/1.3560911&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners a)
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3560911
10.1063/1.3560911
SEARCH_EXPAND_ITEM