1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activitya)
a)Paper GI2 2, Bull. Am. Phys. Soc. , 107 (2010).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/5/10.1063/1.3563572
1.
1. T. Munsat, C. W. Domier, X. Y. Kong, T. R. Liang, N. C. Luhmann, B. J. Tobias, W. Lee, H. K. Park, G. Yun, I. G. J. Classen and A. J. H. Donne, Appl. Opt. 49, E20 (2010).
http://dx.doi.org/10.1364/AO.49.000E20
2.
2. I. G. J. Classen, J. E. Boom, W. Suttrop, E. Schmid, B. Tobias, C. W. Domier, J. N. C. Luhmann, A. J. H. Donné, R. J. E. Jaspers, P. C. d. Vries, H. K. Park, T. Munsat, M. García-Muñoz, P. A. Schneider, and ASDEX-U Team, Rev. Sci. Instrum. 81, 10D929 (2010).
http://dx.doi.org/10.1063/1.3483214
3.
3. B. Tobias, C. W. Domier, T. Liang, X. Kong, L. Yu, G. S. Yun, H. K. Park, I. G. J. Classen, J. E. Boom, A. J. H. Donné, T. Munsat, R. Nazikian, M. A. Van Zeeland, R. L. Boivin, and J. N. C. Luhmann, Rev. Sci. Instrum. 81, 10D928 (2010).
http://dx.doi.org/10.1063/1.3460456
4.
4. G. S. Yun, W. Lee, M. J. Choi, J. B. Kim, H. K. Park, C. W. Domier, B. Tobias, T. Liang, X. Kong, J. N. C. Luhmann, and A. J. H. Donné, Rev. Sci. Instrum. 81, 10D930 (2010).
http://dx.doi.org/10.1063/1.3483209
5.
5. T. Liang, B. Tobias, X. Kong, C. W. Domier, J. N. C. Luhmann, W. Lee, G. S. Yun, and H. K. Park, Rev. Sci. Instrum. 81, 10D909 (2010).
http://dx.doi.org/10.1063/1.3478637
6.
6. B. Tobias, I. G. J. Classen, C. W. Domier, W. W. Heidbrink, J. N. C. Luhmann, R. Nazikian, H. K. Park, D. A. Spong, and M. A. Van Zeeland, “Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging,” Phys. Rev. Lett. 106, 075003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.075003
7.
7. H. K. Park, A. J. H. Donne, N. C. Luhmann, I. G. J. Classen, C. W. Domier, E. Mazzucato, T. Munsat, M. J. V. van de Pol, Z. Xia, and TEXTOR Team, Phys. Rev. Lett. 96, 195003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.195003
8.
8. H. K. Park, N. C. Luhmann, A. J. H. Donne, I. G. J. Classen, C. W. Domier, E. Mazzucato, T. Munsat, M. J. V. de Pol, Z. Xia, and TEXTOR Team, Phys. Rev. Lett. 96, 195004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.195004
9.
9. T. Munsat, H. K. Park, I. G. J. Classen, C. W. Domier, A. J. H. Donne, N. C. Luhmann, E. Mazzucato, M. J. van de Pol, and TEXTOR Team, Nucl. Fusion 47, L31 (2007).
http://dx.doi.org/10.1088/0029-5515/47/11/L01
10.
10. H. K. Park, J. N. C. Luhmann, A. J. H. Donné, B. Tobias, G. S. Yun, M. Choi, I. G. J. Classen, C. W. Munsat, J. C. Kim, X. Kong, W. Lee, T. Liang, T. Munsat, L. Yu, and ASDEX Upgrade Team, in Proceedings of the 23rd Fusion Energy Conference, Daejeon, Korea Republic of Korea (IAEA, Vienna, 2010).
11.
11. M. A. Van Zeeland, W. W. Heidbrink, R. Nazikian, M. E. Austin, C. Z. Cheng, M. S. Chu, N. N. Gorelenkov, C. T. Holcomb, A. W. Hyatt, G. J. Kramer, J. Lohr, G. R. McKee, C. C. Petty, R. Prater, W. M. Solomon, and D. A. Spong, Nucl. Fusion 49, 065003 (2009).
http://dx.doi.org/10.1088/0029-5515/49/6/065003
12.
12. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum, New York, 1984).
13.
13. R. Nazikian, G. Y. Fu, M. E. Austin, H. L. Berk, R. V. Budny, N. N. Gorelenkov, W. W. Heidbrink, C. T. Holcomb, G. J. Kramer, G. R. McKee, M. A. Makowski, W. M. Solomon, M. Shafer, E. J. Strait, and M. A. Van Zeeland, Phys. Rev. Lett. 101, 185001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.185001
14.
14. C. Z. Cheng, Phys. Rep. 211, 1 (1992).
http://dx.doi.org/10.1016/0370-1573(92)90166-W
15.
15. C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987).
http://dx.doi.org/10.1016/0021-9991(87)90023-4
16.
16. D. A. Spong, B. A. Carreras, C. L. Hedrick, N. Dominguez, L. A. Charlton, P. J. Christenson, and J. N. Leboeuf, Phys. Scr. 45, 159 (1992).
http://dx.doi.org/10.1088/0031-8949/45/2/015
17.
17. D. A. Spong, B. A. Carreras, and C. L. Hedrick, Phys. Fluids B 4, 3316 (1992).
http://dx.doi.org/10.1063/1.860386
18.
18. E. A. Lazarus, T. C. Luce, M. E. Austin, D. P. Brennan, K. H. Burrell, M. S. Chu, J. R. Ferron, A. W. Hyatt, R. J. Jayakumar, L. L. Lao, J. Lohr, M. A. Makowski, T. H. Osborne, C. C. Petty, P. A. Politzer, R. Prater, T. L. Rhodes, J. T. Scoville, W. M. Solomon, E. J. Strait, A. D. Turnbull, F. L. Waelbroeck, and C. Zhang, Phys. Plasmas 14, 055701 (2007).
http://dx.doi.org/10.1063/1.2436849
19.
19. J. A. Wesson, Plasma Phys. Controlled Fusion 28, 243 (1986).
http://dx.doi.org/10.1088/0741-3335/28/1A/022
20.
20. J. Wesson and D. J. Campbell, Tokamaks, 3rd ed. (Clarendon, Oxford University Press, Oxford, New York, 2004).
21.
21. B. B. Kadomtsev, Sov. J. Plasma Phys. 1, 389 (1975).
22.
22. H. Park, E. Mazzucato, T. Munsat, C. W. Domier, M. Johnson, N. C. Luhmann, J. Wang, Z. Xia, I. G. J. Classen, A. J. H. Donne, and M. J. van de Pol, Rev. Sci. Instrum. 75, 3787 (2004).
http://dx.doi.org/10.1063/1.1794864
23.
23. L. Lei, B. Tobias, C. W. Domier, J. N. C. Luhmann, G. J. Kramer, E. J. Valeo, W. Lee, G. S. Yun, and H. K. Park, Rev. Sci. Instrum. 81, 10D904 (2010).
http://dx.doi.org/10.1063/1.3464461
24.
24. H. K. Park, I. Hong, M. Kim, G. S. Yun, W. Lee, J. Kim, B. Tobias, C. W. Domier, and J. N. C. Luhmann, Rev. Sci. Instrum. 81, 10D933 (2010).
http://dx.doi.org/10.1063/1.3499606
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3563572
Loading
/content/aip/journal/pop/18/5/10.1063/1.3563572
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/5/10.1063/1.3563572
2011-04-29
2014-08-02

Abstract

Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfvén wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfvén eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/5/1.3563572.html;jsessionid=2mrubojj45f69.x-aip-live-02?itemId=/content/aip/journal/pop/18/5/10.1063/1.3563572&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activitya)
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3563572
10.1063/1.3563572
SEARCH_EXPAND_ITEM