1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pop/18/5/10.1063/1.3575624
1.
1. M. Dunne, Science 312, (5772), 374 (2006).
http://dx.doi.org/10.1126/science.1126051
2.
2. R. Snavely, M. Key, S. Hatchett, T. Cowan, M. Roth, T. Phillips, M. Stoyer, E. Henry, T. Sangser, M. Signh, S. Wilks, A. Mackinnon, A. Offenberger, D. Pennington, K. Yasuike, A. Langdon, B. Lasinski, J. Johnson, M. Perry, and E. Campbell, Phys. Rev. Lett. 85, 2945 (2000);
http://dx.doi.org/10.1103/PhysRevLett.85.2945
2. S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, and K. Yasuike, Phys. Plasmas 7, 2076 (2000).
http://dx.doi.org/10.1063/1.874030
3.
3. A. Maksimchuk, S. Gu, K. Flippo, and D. Umstadter, Phys. Rev. Lett. 84, 4108 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4108
4.
4. E. L. Clark, K. Krushelnick, J. R. Davies, M. Zepf, M. Tatarakis, F. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts, and A. E. Dangor, Phys. Rev. Lett. 84, 670 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.670
5.
5. S. A. Gaillard, J. Fuchs, N. Renard-Le Galloudec, and T. E. Cowan, Phys. Rev. Lett. 96, 249201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.249201
6.
6. B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 755 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.755
7.
7. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, Science 300, 1107 (2003).
http://dx.doi.org/10.1126/science.1080552
8.
8. K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, and V. Y. Bychenkov, Appl. Phys. Lett. 78, 595 (2001).
http://dx.doi.org/10.1063/1.1343845
9.
9. M. Roth, T. Cowan, M. Key, S. Hatchett, C. Brown, W. Fountain, J. Johnson, D. Pennington, R. Snavely, S. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. Bulanov, E. Campbell, M. D. Perry, and H. Powell, Phys. Rev. Lett. 86, 436 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.436
10.
10. B. A. Hammel, C. J. Keane, M. D. Cable, D. R. Kania, J. D. Kilkenny, R. W. Lee, and R. Pasha, Phys. Rev. Lett. 70, 1263 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1263
11.
11. R. L. Kauffman, L. J. Suter, C. B. Darrow, J. D. Kilkenny, H. N. Kornblum, D. S. Montgomery, D. W. Phillion, M. D. Rosen, A. R. Theissen, R. J. Wallace, and F. Ze, Phys. Rev. Lett. 73, 2320 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2320
12.
12. P. Y. Chang, R. Betti, B. K. Spears, K. S. Anderson, J. Edwards, M. Fatenejad, J. D. Lindl, R. L. McCrory, R. Nora, and D. Shvarts, Phys. Rev. Lett. 104, 135002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.135002
13.
13. V. A. Smalyuk, R. Betti, J. A. Delettrez, V. Yu. Glebov, D. D. Meyerhofer, P. B. Radha, S. P. Regan, T. C. Sangster, J. Sanz, W. Seka, C. Stoeckl, B. Yaakobi, J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin, Phys. Rev. Lett. 104, 165002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.165002
14.
14. M. Borghesi, D. H. Campbell, A. Schiavi, M. G. Haines, O. Willi, A. J. MacKinnon, P. Patel, L. A. Gizzi, M. Galimberti, R. J. Clarke, F. Pegoraro, H. Ruhl, and S. Bulanov, Phys. Plasmas 9, 2214 (2002).
http://dx.doi.org/10.1063/1.1459457
15.
15. L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan, T. Grismayer, S. Kar1, A. Macchi, P. Mora, G. Pretzler, A. Schiavi, T. Toncian, and O. Willi, Phys. Rev. Lett. 95, 195001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.195001
16.
16. T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blažević, E. Brambrink, J. Cobble, J. Fernandez, J.-C. Gauthier, M. Geissel, M. Hegelich, J. Kaæ, S. Karsch, G. P. Le Sage, S. Letzring, M. Manclossi, S. Meyroneinc, A. Newkirk, H. Pepin, and N. Renard-Le Galloudec, Phys. Rev. Lett. 92, 204801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.204801
17.
17. K. Krushelnick, E. L. Clark, R. Allott, F. N. Beg, C. N. Danson, A. Machacek, V. Malka, Z. Najmudin, D. Neely, P. A. Norreys, M. R. Salvati, M. I. K. Santala, M. Tatarakis, I. Watts, M. Zepf, A. E. Dangor, IEEE Trans. Plasma Sci. 28, 1184 (2000).
http://dx.doi.org/10.1109/27.893296
18.
18. P. Antici, M. Fazi, A. Lombardi, M. Migliorati, L. Palumbo, P. Audebert, and J. Fuchs, J. App. Phys. 104, 124901 (2008).
http://dx.doi.org/10.1063/1.3021160
19.
19. U. Linz and J. Alonso, Phys. Rev. ST—Accel. Beams 10, 094801 (2007).
http://dx.doi.org/10.1103/PhysRevSTAB.10.094801
20.
20. K. W. D. Ledingham, W. Galster, and R. Sauerbrey, Br. J. Radiol. 80, 855 (2007).
http://dx.doi.org/10.1259/bjr/29504942
21.
21. J. Weichsel, T Fuchs, E Lefebvre, E d’Humières, and U Oelfke, Phys. Med. Biol. 53, 4383 (2008).
http://dx.doi.org/10.1088/0031-9155/53/16/011
22.
22. S. Schell and J. J. Wilkens, Phys. Med. Biol. 54, N459 (2009).
http://dx.doi.org/10.1088/0031-9155/54/19/N04
23.
23. T. Toncian, M. Borghesi, J. Fuchs, E. d’Humières, P. Antici, P. Audebert, E. Brambrink, C. A. Cecchetti, A. Pipahl, L. Romagnani, and O. Willi, Science 312, (2006).
http://dx.doi.org/10.1126/science.1124412
24.
24. H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov, Nature 439, 445 (2006).
http://dx.doi.org/10.1038/nature04492
25.
25. E. Fourkal, J. S. Li, W. Xiong, A. Nahum, and C.-M. Ma, Phys. Med. Biol. 48, 3977 (2003).
http://dx.doi.org/10.1088/0031-9155/48/24/001
26.
26. T. Zh. Esirkepov, S. V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, V. S. Khoroshkov, K. Mima, H. Daido, Y. Kato, Y. Kitagawa, K. Nagai, and S. Sakabe, Phys. Rev. Lett. 89, 175003 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.175003
27.
27. A. P. L Robinson and P. Gibbon, Phys. Rev. E 75, 015401(R) (2007).
http://dx.doi.org/10.1103/PhysRevE.75.015401
28.
28. S. A. Gaillard, K. A. Flippo, M. E. Lowenstern, J. E. Mucino, J. M. Rassuchine, D. C. Gautier, J. Workman, and T. E. Cowan, J. Phys.: Conf. Ser. 244, 022034 (2010).
http://dx.doi.org/10.1088/1742-6596/244/2/022034
29.
29. K. Flippo, T. Bartal, F. Beg, S. Chawla, J. Cobble, S. A. Gaillard, D. Hey, A. MacKinnon, A. MacPhee, P. Nilson, D. T. Offermann, S. Le Pape, and M. J. Schmitt, J. Phys.: Conf. Ser. 244, 022033 (2010).
http://dx.doi.org/10.1088/1742-6596/244/2/022033
30.
30. L. Robson, P.T. Simpson, R.J. Clarke, K. W. D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlstrom, M. Zepf, and P. McKenna, Nat. Phys. 3, 58 (2007).
http://dx.doi.org/10.1038/nphys476
31.
31. V. P. Cosgrove, A. C. A. Aro, S. Green, M. C. Scott, G. C. Taylor, D. E. Bonnett, and A. Kacperek, Rad. Prot. Dos. 44, 405 (1992).
32.
32. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175003
33.
33. T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, Phys. Plasmas 16, 083103 (2009).
http://dx.doi.org/10.1063/1.3196845
34.
34. A. P. L. Robinson, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, New J. Phys. 10, 013021 (2008).
http://dx.doi.org/10.1088/1367-2630/10/1/013021
35.
35. A. Macchi, S. Veghini, T. V. Liseykina, and F. Pegoraro, New J. Phys. 12, 045013 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/045013
36.
36. K. Flippo, B. M. Hegelich, B. J. Albright, L. Yin, D. C. Gautier, S. Letzring, M. Schollmeier, J. Schreiber, R. Schulze, and J. C. Fernandez, Laser Part. Beams 25, 3 (2007).
http://dx.doi.org/10.1017/S0263034607070012
37.
37. L. Yin, B. J. Albright, B. M. Hegelich, K. J. Bowers, K. A. Flippo, T. J. T. Kwan, and J. C. Fernandez, Phys. Plasmas 14, 056706 (2007).
http://dx.doi.org/10.1063/1.2210929
38.
38. S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington, A. MacKinnon, and R. Snavely, Phys. Plasmas 8, 542 (2001).
http://dx.doi.org/10.1063/1.1333697
39.
39. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.185002
40.
40. P. Mora, Phys. Rev. E 72, 056401 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.056401
41.
41. S. D. Baton, M. Koenig, P. Guillou, B. Loupias, A. Benuzzi-Mounaix, Julien Fuchs, C. Rousseaux, L. Gremillet, D. Batani, A. Morace, M. Nakatsutsumi, R. Kodama and Y. Aglitskiy, High Energy Density Phys. 3, 358 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.05.002
42.
42. F. Perez, L. Gremillet, M. Koenig, S. D. Baton, P. Audebert, M. Chahid, C. Rousseaux, M. Drouin, E. Lefebvre, T. Vinci, J. Rassuchine, T. Cowan, S. A. Gaillard, K. A. Flippo, and R. Shepherd, Phys. Rev. Lett. 104, 085001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.085001
43.
43. S. Buffechoux, J. Psikal, M. Nakatsutsumi, L. Romagnani, A. Andreev, K. Zeil, M. Amin, P. Antici, T. Burris-Mog, A. Compant-La-Fontaine, E. d’Humières, S. Fourmaux, S. Gaillard, F. Gobet, F. Hannachi, S. Kraft, A. Mancic, C. Plaisir, G. Sarri, M. Tarisien, T. Toncian, U. Schramm, M. Tampo, P. Audebert1, O. Willi, T. E. Cowan, H. Pépin, V. Tikhonchuk, M. Borghesi, and J. Fuchs, Phys. Rev. Lett. 105, 015005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.015005
44.
44. T. Kluge, W. Enghardt, S. D. Kraft, U. Schramm, Y. Sentoku, K. Zeil, T. E. Cowan, R. Sauerbrey, and M. Bussmann, Phys. Rev. E 82, 016405 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.016405
45.
45. C.-K. Huang, B. J. Albright, L. Yin, H.-C. Wu, K. J. Bowers, B. M. Hegelich, and J. C. Fernández, Phys. Rev. ST Accel. Beams 14, 031301 (2011).
http://dx.doi.org/10.1103/PhysRevSTAB.14.031301
46.
46. R. Kodama, Y. Sentoku, Z. L. Chen, G. R. Kumar, S. P. Hatchett, Y. Toyama, T. E. Cowan, R. R. Freeman, J. Fuchs, Y. Izawa, M. H. Key, Y. Kitagawa, K. Kondo, T. Matsuoka, H. Nakamura, M. Nakatsutsumi, P. A. Norreys, T. Norimatsu, R. A. Snavely, R. B. Stephens, M. Tampo, K. A. Tanaka, and T. Yabuuchi, Nature 432, 1005 (2004).
http://dx.doi.org/10.1038/nature03133
47.
47. J. S. Green, K. L. Lancaster, K. U. Akli, C. D. Gregory, F. N. Beg, S. N. Chen, D. Clark, R. R. Freeman, S. Hawkes, C. Hernandez-Gomez, H. Habara, R. Heathcote, D. S. Hey, K. Highbarger, M. H. Key, R. Kodama, K. Krushelnick, I. Musgrave, H. Nakamura, M. Nakatsutsumi, N. Patel, R. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R. L. Weber, M. S. Wei, N. C. Woolsey, and P. A. Norreys, Nat. Phys. 3, 853 (2007).
http://dx.doi.org/10.1038/nphys755
48.
48. H. Nakamura, B. Chrisman, T. Tanimoto, M. Borghesi, K. Kondo, M. Nakatsutsumi, T. Norimatsu, M. Tampo, K. A. Tanaka, T. Yabuuchi, Y. Sentoku, and R. Kodama, Phys. Rev. Lett. 102, 045009 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045009
49.
49. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, Phys. Plasmas 11, 3083 (2004).
http://dx.doi.org/10.1063/1.1735734
50.
50. K. A. Flippo, E. d’Humières, S. A. Gaillard, J. Rassuchine, D. C. Gautier, M. Schollmeier, F. Nurnberg, J. L. Kline, J. Adams, B. Albright, M. Bakeman, K. Harres, R. P. Johnson, G. Korgan, S. Letzring, S. Malekos, N. Renard -LeRenard-Le Galloudec, Y. Sentoku, T. Shimada, M. Roth, T. E. Cowan, J. C. Fernandez, and B. M. Hegelich, Phys. Plasmas 15, 5 (2008).
http://dx.doi.org/10.1063/1.2918125
51.
51. K. A. Flippo, J. Workman, D. C. Gautier, R. P. Johnson, and T. Shimada, Rev. Sci. Instrum. 79, 10E534 (2008).
http://dx.doi.org/10.1063/1.2987678
52.
52. J. Rassuchine, E. d’Humières, S. D. Baton, P. Guillou, M. Koenig, M. Chahid, F. Perez, J. Fuchs, P. Audebert, R. Kodama, M. Nakatsutsumi, N. Ozaki, D. Batani, A. Morace, R. Redaelli, L. Grémillet, C. Rousseaux, F. Dorchies, C. Fourment, J. J. Santos, J. Adams, G. Korgan, S. Malekos, S. B. Hansen, R. Shepherd, K. Flippo, S. Gaillard, Y. Sentoku, and T. E. Cowan, Phys. Rev. E 79, 036408 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.036408
52. S. D. Baton, M. Koenig, J. Fuchs, A. Benuzzi-Mounaix, B. Loupias, T. Vinci, L. Grémillet, C. Rousseaux, M. Drouin, E. Lefebvre, F. Dorchies, C. Fourment, J. J. Santos, D. Batani, A. Morace, R. Redaelli, M. Nakatsutsumi, R. Kodama, A. Nishida, N. Ozaki, T. Norimatsu, Y. Aglitskiy, S. Atzeni, and A. Schiavi, Phys. Plasmas 15, 042706 (2008).
http://dx.doi.org/10.1063/1.2903054
53.
53. R. C. Shah, R. P. Johnson, T. Shimada, K. A. Flippo, J. C. Fernandez, and B. M. Hegelich, Optics Express 34, 2273 (2008).
54.
54. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
55.
55. D. C. Gautier, K. A. Flippo, S. A. Letzring, J. Workman, T. Shimada, R. P. Johnson, T. R. Hurry, S. A. Gaillard, and B. M. Hegelich, Rev. Sci. Instrum. 79, 10F547 (2008).
http://dx.doi.org/10.1063/1.2979881
56.
56. R. P. Johnson, T. Shimada, and R. C. Shah, Techniques for Pre-pulse Contrast Improvement on the 0.5 ps, 80 J, “C” Beamline of the Trident Laser, Conference on Lasers and Electro-Optics Proceedings (submitted).
57.
57. J. A. Koch, Y. Aglitskiy, C. Brown, T. Cowan, R. Freeman, S. Hatchett, G. Holland, M. Key, A. Mackinnon, J. Seely, R. Snavely, and R. Stephens, Rev. Sci. Instrum. 74, 2130 (2003).
http://dx.doi.org/10.1063/1.1537448
58.
58. See http://www.fujifilm.com/products/life_science/si_imgplate/img_plate. html for Imaging Plates supplied by Fujifilm.
59.
59. See www.gafchromic.com for Gafchromic RCF type MD-V2-55 and HD-810, supplied by International Specialty Products www.gafchromic.com
60.
60. F. Nürnberg, M. Schollmeier, K. Harres, A. Blažević, P. Audebert, E. Brambrink, D. C. Carroll, K. Flippo, D. C. Gautier, B. M. Hegelich, O. Lundh, K. Markey, P. McKenna, D. Neely, and M. Roth, Rev. Sci. Instrum. 80, 033301 (2007).
http://dx.doi.org/10.1063/1.3086424
61.
61. Y. Sentoku and A. J. Kemp, J. Comp. Phys. 227, 6846 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.03.043
62.
62. R. B. Campbell, J. S. DeGroot, T. A. Mehlhorn, D. R. Welch, and B. V. Oliver, Phys. Plasmas 10, 4169 (2003).
http://dx.doi.org/10.1063/1.1609444
63.
63. A. P. L. Robinson and M. Sherlock, Phys. Plasmas 14, 083105 (2007).
http://dx.doi.org/10.1063/1.2768317
64.
64. Y. Sentoku and M. C. Downer, High Energy Density Phys. 6, 268 (2010).
http://dx.doi.org/10.1016/j.hedp.2009.11.003
65.
65. J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pepin, and P. Audebert, Nature 2, 48 (2006).
66.
66. T. Nakamura, K. Mima, H. Sakagami, and T. Johzaki, Phys. Plasmas 14, 053112 (2007).
http://dx.doi.org/10.1063/1.2731383
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3575624
Loading
/content/aip/journal/pop/18/5/10.1063/1.3575624
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/5/10.1063/1.3575624
2011-05-23
2015-07-02

Abstract

We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 × 106 protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of ∼80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/5/1.3575624.html;jsessionid=1l723nauonc0r.x-aip-live-02?itemId=/content/aip/journal/pop/18/5/10.1063/1.3575624&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targetsa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3575624
10.1063/1.3575624
SEARCH_EXPAND_ITEM