1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
The many faces of shear Alfvén wavesa)
a) Paper AR1 1, Bull. Am. Phys. Soc. 55, 20 (2010).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/5/10.1063/1.3592210
1.
1. H. Alfvén, Mon. Not. R. Astron. Soc. 107, 211 (1947).
2.
2. S. Tomczyk, S. W. McIntosh, S. L. Keil, P. G. Judge, T. Schad, D. H. Seeley, and J. Edmondson, Science 317, 1192 (2007).
http://dx.doi.org/10.1126/science.1143304
3.
3. P. J. Coleman Jr., Phys. Rev. Lett. 17, 207 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.207
4.
4. M. L. Goldstien, D. A. Roberts, and W. H. Matthaeus, Ann. Rev. Astrophys. 33, 283 (1995).
http://dx.doi.org/10.1146/annurev.aa.33.090195.001435
5.
5. W. H. Matthaeus, M. L. Goldstein, and D. A. Roberts, J. Geophys. Res. 95 (20), 675 doi:10.1029/JA095iA12p20673 (1990).
http://dx.doi.org/10.1029/JA095iA12p20673
6.
6. V. M. Chmyrev, S. V. Bilchenko, O. A. Pokhotelov, V. A. Marchenko, V. I. Lararev, A. V. Strelsov, and L. Stenflo, Phys. Scr. 38, 841 (1988).
http://dx.doi.org/10.1088/0031-8949/38/6/016
7.
7. P. J. Louran, J. E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Holback, P. O. Dovner, A. J. Eriksson, and G. Holmgren, Geophys. Res. Lett. 21, 1823 doi:10.1029/94GL01424 (1994).
http://dx.doi.org/10.1029/94GL01424
8.
8. J. R. Wygant A. Keiling, C. A. Cattell, M. Johnson, R. L. Lysak, M. Temerin, F. S. Mozer, C. A. Kletzing, J. D. Scudder, W. Peterson, C. T. Russell, G. Parks, M. Brittnacher, G. Germany, and J. Spann, J. Geophys. Res. 106, 675 (2000).
9.
9. Y. Jantenco-Pereira, Phys. Scr. T 60, 113 (1995).
http://dx.doi.org/10.1088/0031-8949/1995/T60/015
10.
10. H. Alfvén, Nature 150, 405 (1942).
http://dx.doi.org/10.1038/150405d0
11.
11. C.-G. Fålthammar, IEEE Trans. Plasma Sci. 25, 409 (1997).
http://dx.doi.org/10.1109/27.597253
12.
12. S. Lundquist, Nature 164, 145 (1945);
12. S. Lundquist, Phys. Rev. 76, 1805 (1945).
http://dx.doi.org/10.1038/164145a0
13.
13. W. H. Bostick and M. Levine, Phys. Rev. 94, 671 (1952).
http://dx.doi.org/10.1103/PhysRev.87.671
14.
14. W. Gekelman, J. Geophys. Res. 104, 14417 doi:10.1029/98JA00161 (1999).
http://dx.doi.org/10.1029/98JA00161
15.
15. W. Heidbrink, Phys. Plasmas 15, 056107 (2008).
http://dx.doi.org/10.1063/1.2838239
16.
16. S. Vincena, G. J. Morales, and J. E. Maggs, Phys. Plasmas 17, 52106 (2010).
http://dx.doi.org/10.1063/1.3422549
17.
17. B. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, San Diego, CA, 1961).
18.
18. G. J. Morales and J. E Maggs, Phys. Plasmas 4, 4118 (1997).
http://dx.doi.org/10.1063/1.872531
19.
19. G. J. Morales, R. Loritsch, and J. E. Maggs, Phys. Plasmas 1, 3765 (1994).
http://dx.doi.org/10.1063/1.870850
20.
20. S. Lundquist, Nature 164, 145 (1949).
http://dx.doi.org/10.1038/164145a0
21.
21. B. Lehnert, Phys. Rev. 94, 815 (1952).
http://dx.doi.org/10.1103/PhysRev.94.815
22.
22. D. F. Jephcott, Nature 183, 1652 (1959).
http://dx.doi.org/10.1038/1831652a0
23.
23. G. A. Sawyer, P. L. Scott, and T. F. Stratton, Phys. Fluids 2, 47 (1959).
http://dx.doi.org/10.1063/1.1724390
24.
24. J. W. Wilcox, F. Boley, and A. De Silva, Phys. Fluids 3, 15 (1960).
http://dx.doi.org/10.1063/1.1705996
25.
25. D. F. Jephcott and P. M. Stocker, J. Fluid Mech. 13, 587 (1962).
http://dx.doi.org/10.1017/S0022112062000956
26.
26. L. C. Woods, J. Fluid Mech. 13, 579 (1962).
http://dx.doi.org/10.1017/S0022112062000944
27.
27. J. W. Wilcox, F. Boley, and A. De Silva, Phys. Fluids 3, 15 (1960).
http://dx.doi.org/10.1063/1.1705996
28.
28. D. Swanson, R. Gould, and R. Hertel, Phys. Fluids 7, 269 (1964).
http://dx.doi.org/10.1063/1.1711195
29.
29. G. Müller, Plasma Phys. 16, 813 (1974).
http://dx.doi.org/10.1088/0032-1028/16/9/003
30.
30. Y. Amagishi and A. Tsushima, Plasma Phys.Controlled Fusion 26, 1489 (1984).
http://dx.doi.org/10.1088/0741-3335/26/12B/005
31.
31. T. Stix, Waves in Plasmas (AIP, New York, 1992), p. 12.
32.
32. Y. Amagishi, M. Inutaki, T. Inutake, and T. Akitsu, Jpn. J. Appl. Phys. 20, 2171 (1981).
http://dx.doi.org/10.1143/JJAP.20.2171
33.
33. Y. Amagishi, Phys. Rev. Lett. 64, 1247 (1990);
33. Y. Amagishi, J. Phys. Soc. Jpn. 59, 2374 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1247
34.
34. W. Gekelman, J. Geophys. Res. 104, 14417 doi:10.1029/98JA00161 (1999).
http://dx.doi.org/10.1029/98JA00161
35.
35. G. G. Borg, M. H. Brennan, R. C. Cross, L. Giannoue, and I. J. Donneley, Plasma Phys. Controlled Fusion 27, 1125 (1985).
http://dx.doi.org/10.1088/0741-3335/27/10/004
36.
36. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. E. Maggs, Rev. Sci. Instrum. 62, 2875 (1991).
http://dx.doi.org/10.1063/1.1142175
37.
37. P. Pribyl and W. Gekelman, Rev. Sci. Instrum. 75, 669 (2004).
http://dx.doi.org/10.1063/1.1646732
38.
38. D. Leneman, W. Gekelman, and J. E. Maggs, Rev. Sci. Instrum. 77, 015108 (2006).
http://dx.doi.org/10.1063/1.2150829
39.
39. D. Leneman and W. Gekelman, Rev. Sci. Instrum. 72, 3473 (2001).
http://dx.doi.org/10.1063/1.1374588
40.
40. W. Gekelman, D. Leneman, and J. E. Maggs, Phys. Plasmas 1, 3775 (1994).
http://dx.doi.org/10.1063/1.870851
41.
41. W. Gekelman, S. Vincena, D. Leneman, and J. Maggs, Plasma Phys. Controlled Fusion 39, A101 (1997).
http://dx.doi.org/10.1088/0741-3335/39/5A/011
42.
42. D. Leneman, W. Gekelman, and J. E. Maggs, Phys. Rev. Lett. 82, 2673 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2673
43.
43. N. Palmer, W. Gekelman, and S. Vincena, Phys. Plasmas 12, 072102 (2005).
http://dx.doi.org/10.1063/1.1930796
44.
44. C. Kletzing, S. Bounds, J. Martin-Hiner, W. Gekelman, and C. Mitchell, Phys. Rev. Lett. 90, 035004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.035004
45.
45. C. Kletzing, D. Thucks, F. Skiff, S. Bounds, and S. Vincena, Phys. Rev. Lett. 104, 095001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095001
46.
46. A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A. S. Sharma, and D. Papadopoulos, Phys. Plasmas 16, 092106 (2009).
http://dx.doi.org/10.1063/1.3224030.1
47.
47. A. V. Karavaev, N. A. Gumerov, K. Papadopoulos, X. Shao, A. S. Sharma, W. Gekelman, P. Pribyl, Y. Wang, B. Van Compernolle, and S. Vincena, “Generation of shear Alfvén waves by a rotating magnetic field,” Phys. Plasmas (in review).
http://dx.doi.org/10.1063/1.3224030.1
48.
48. A.V. Karavaev, N. A. Gumerov, K. Papadopoulos, X. Shao, A. S. Sharma, W. Gekelman, A. Giglotti, P. Pribyl, and S. Vincena, Phys. Plasmas 17, 012102 (2010).
http://dx.doi.org/10.1063/1.3274916
49.
49. A. Hasegawa and C. Uberoi, The Alfven Wave (Technical Information Center, US Department of Energy, Springfield, VA, 1982).
50.
50. K. Takahashi and R. McPherron, Planet Space Sci. 32, 1343 (1984).
http://dx.doi.org/10.1016/0032-0633(84)90013-8
51.
51. M. J. Engebretson, L. J. Zanetti, T. A. Potemra, and M. H. Acuna, Geophys. Res. Lett. 13, 905 doi:10.1029/GL013i009p00905 (1986).
http://dx.doi.org/10.1029/GL013i009p00905
52.
52. M. R. Lessard, M. K. Hudson, J. C. Samson, and J. R. Wygant, J. Geophys. Res. 104, 12361 doi:10.1029/1998JA900117 (1999).
http://dx.doi.org/10.1029/1998JA900117
53.
53. J. C. Samson, D. D. Wallis, T. J. Hughes, F. Creutzberg, and T. J. Hughes, J. Geophys. Res. 97, 8495 doi:10.1029/91JA03156 (1992).
http://dx.doi.org/10.1029/91JA03156
54.
54. H. J. Singer, W. J. Hughes, and C. T. Russell, J. Geophys. Res. 87, 3519 doi:10.1029/JA087iA05p03519 (1982).
http://dx.doi.org/10.1029/JA087iA05p03519
55.
55. F. Plaschke, K. H. Glassmeier, H. U. Auster, O. D. Constantinescu, W. Magnes, V. Angelopoulos, D. G. Sibeck, and J. P. McFadden, Geophys. Res. Lett. 36, LO2104 doi:10.1029%2F2008GL036411 (2009).
http://dx.doi.org/10.1029%2F2008GL036411
56.
56. A. Tsushima, Y. Amagishi, M. Inutake, Phys. Lett. 88A, 457 (1982).
57.
57. C. C. Mitchell, S. Vincena, J. E. Maggs, and W. Gekelman, J. Geophys. Res. 28, 923 (2001).
58.
58. C. C. Mitchell, J. E. Maggs, and W. Gekelman, Phys. Plasmas 9, 2909 (2002).
http://dx.doi.org/10.1063/1.1483310
59.
59. A. Strelsov and W. Lotko, J. Geophys. Res. 101, 5343 doi:10.1029/95JA03762 (1996).
http://dx.doi.org/10.1029/95JA03762
60.
60. C. Mitchell, “Alfven Eigenmodes and Field Line Resonances,” Ph.D. dissertation UCLA, 2001.
61.
61. S. Vincena, W. Gekelman, and J. E. Maggs, Phys. Rev. Lett. 93, 105003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.105003
62.
62. T. H. Stix, Phys. Fluids 1, 308 (1958).
http://dx.doi.org/10.1063/1.1705889
63.
63. T. H. Stix and R. W. Palladino, in Proceedings of the 2nd UN International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 31, p. 282.
64.
64. F. I. Bowley, J. M. Wilcox, A. W. DeSilva, P. R. Forman, G. W. Gordon, W. H. Hamilton, and C. N. Watson-Munro, Phys. Fluids 6, 925 (1963).
http://dx.doi.org/10.1063/1.1706848
65.
65. J. A. Lehane and F. J. Paoloni, Plasma Phys. 12, 823 1970.
http://dx.doi.org/10.1088/0032-1028/12/11/001
66.
66. D. G. Swanson, R. W. Clark, P. Korn, S. Robertson, and C. B. Wharton, Phys. Rev. Lett. 28, 1015 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.1015
67.
67. A. Breun, P. Brooker, D. Brouchous, J. Browning, G. Butz, J. Conrad, E. Dales, J. Ferron, R. Goulding, N. Hershkowitz, T. Intrator, C. Litwin, R. Majeski, S. Maessick, B. Nelson, L. Peranich, H. Persing, J. Radtke, D. Roberts, G. Severn, D. Sing, E. Wang, D. A. D’Ippolito, J. R. Myra, and G. L. Francis, in 11th IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, Japan, 13–20 November 1986, Vol. 2 of Nuclear Fusion Supplement 1987, pp. 263271.
68.
68. Y. Yasaka, R. Majeski, J. Browning, N. Hershkowitz, and D. Roberts, Nucl. Fusion 28, 1765 (1988).
http://dx.doi.org/10.1088/0029-5515/28/10/005
69.
69. D. R. Roberts, N. Hershkowitz, R. P. Majeski, and D. H. Edgell, AIP Conf. Proc. 190, 462 (1989).
http://dx.doi.org/10.1063/1.38448
70.
70. S. V. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Fiz. Plazmy 9, 371 (1983).
71.
71. P. P. Belyaev, S. V. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Geomagn. Aeron. 24, 2 (1984).
72.
72. P. P. Belyaev, S. V. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 33, 408 (1990).
73.
73. V. Yu. Trakhtengerts and A. Ya. Feldstein, J. Geophys. Res. 96, 19363 doi:10.1029/91JA00376 (1991).
http://dx.doi.org/10.1029/91JA00376
74.
74. B. J. Thompson and R. L. Lysak, J. Geophys. Res. 101, 5359 doi:10.1029/95JA03622 (1996).
http://dx.doi.org/10.1029/95JA03622
75.
75. R. L. Lysak, J. Geophys. Res. 104, 10017 doi:10.1029/1999JA900024 (1999).
http://dx.doi.org/10.1029/1999JA900024
76.
76. O. A. Pokhotelov, D. Pokhotelov, A. Streltsov, V. Khruschev, and M. Parrot, J. Geophys. Res. 105, 7737 doi:10.1029/1999JA900480 (2000).
http://dx.doi.org/10.1029/1999JA900480
77.
77. M. Grzesiak, Geophys. Res. Lett. 27, 923 doi:10.1029/1999GL010747 (2000).
http://dx.doi.org/10.1029/1999GL010747
78.
78. N. Ivchenko, G. Marklund, K. Lynch, D. Pietrowski, R. Torbert, F. Primdahl, and A. Ranta, Geophys. Res. Lett. 26, 3365 doi:10.1029/1999GL003588 (1999).
http://dx.doi.org/10.1029/1999GL003588
79.
79. P. P. Belyaev, T. Bosinger, S. V. Isaev, and J. Kangas, J. Geophys. Res. 104, 4305 doi:10.1029/1998JA900062 (1999).
http://dx.doi.org/10.1029/1998JA900062
80.
80. F. Z. Feygin, A. K. Nekrasov, K. Mursula, J. Kangas, and T. Pikkarainen, Ann. Geophys. 12, 147 doi:10.1007%2Fs00585-994-0147-8 (1994).
http://dx.doi.org/10.1007%2Fs00585-994-0147-8
81.
81. C. C. Chaston, J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, R. J. Strangeway, and E. J. Lund, J. Geophys. Res. 109, A04205 doi:10.1029/2003JA010053 (2004).
http://dx.doi.org/10.1029/2003JA010053
82.
82. R. L. Lysak and Y. Song, J. Geophys. Res. 107, 1160 doi:10.1029/2001JA000308 (2002).
http://dx.doi.org/10.1029/2001JA000308
83.
83. N. G. Lekhtinen, G. A. Markov, and S. M. Fainstein, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 38, 312 (1995).
84.
84. H. Fukunishi, Y. Takahashi, M. Sato, A. Shone, M. Fujito, and Y. Watanabe, Geophys. Res. Lett. 24, 2973, doi:10.1029/97GL03022 (1997).
http://dx.doi.org/10.1029/97GL03022
85.
85. A. I. Sukhorukov and P. Stubbe, Geophys. Res. Lett. 24, 829 doi:10.1029/97GL00807 (1997).
http://dx.doi.org/10.1029/97GL00807
86.
86. V. Yu. Trakhtengerts, Geomagn. Aeron. 29, 3 (1989).
87.
87. J. E. Maggs and G. J. Morales, Phys. Rev. Lett. 91, 035004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.035004
88.
88. J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Plasmas 12, 013103 (2005).
http://dx.doi.org/10.1063/1.1823413
89.
89. G. J. Morales and J. E. Maggs, Phys. Plasmas 13, 052109 (2006).
http://dx.doi.org/10.1063/1.2200629
90.
90. T. A. Carter, B. Brugman, P. Pribyl, and W. Lybarger, Phys. Rev. Lett. 96, 155001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.155001
91.
91. R. Boswell, Nature (London) 425, 352 (2003).
http://dx.doi.org/10.1038/425352a
92.
92. O. P. Pogutse and E. I. Yurchencko, Nucl.Fusion 18, 1629 (1978).
http://dx.doi.org/10.1088/0029-5515/18/12/003
93.
93. Y. Zhang, W. W. Heidbrink, H. Boehmer, R. McWilliams, G. Chen, B. N. Breizman, S. Vincena, T. Carter, D. Leneman, W. Gekelman, P. Pribyl, and B. Brugman, Phys. Plasmas 15, 012105 (2008).
http://dx.doi.org/10.1063/1.2826440
94.
94. C. Uberoi, Phys. Fluids 15, 1673 (1972).
http://dx.doi.org/10.1063/1.1694148
95.
95. D. A. D’Ippolito and J. P. Goodbloed, Plasma Phys. 22, 1091 (1980).
http://dx.doi.org/10.1088/0032-1028/22/12/006
96.
96. C. Z. Cheng, L. Chen, and M. S. Chance, Ann. Phys. 161, 21 (1984);
96. C. Z. Cheng and M. S. Chance, Phys. Fluids 29, 3695 (1986).
http://dx.doi.org/10.1063%2F1.865801
97.
97. H. H. Duong, W. W. Heidbrink, E. J. Strait, T. W. Petrie, R. Lee, R. A. Moyer, and J. G. Watkins, Nucl. Fusion 33, 749 (1993).
http://dx.doi.org/10.1088/0029-5515/33/5/I06
98.
98. J. E. Maggs and G. J. Morales, Phys. Plasma 4, 290 (1997).
http://dx.doi.org/10.1063/1.872089
99.
99. A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Plasmas 7, 1397 (2000).
http://dx.doi.org/10.1063/1.873957
100.
100. S. Vincena and W. Gekelman, Phys. Plasmas 13, 064503 (2006).
http://dx.doi.org/10.1063/1.2211087
101.
101. A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Rev. Lett. 81, 3659 (1998);
101. A. T. Burke, J. E. Maggs, and G. J. Morales, Phys. Plasmas 7, 544 (2000).
http://dx.doi.org/10.1103/PhysRevLett.81.3659
102.
102. J. R. Penano, G. J. Morales, and J. E. Maggs, Phys. Plasmas 7, 144 (2000).
http://dx.doi.org/10.1063/1.873789
103.
103. D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Plasmas 15, 122304 (2008).
http://dx.doi.org/10.1063/1.3023155
104.
104. M. Shi, D. C. Pace, G. J. Morales, J. E. Maggs, and T. A. Carter, Phys. Plasmas 15, 122304 (2008).
http://dx.doi.org/10.1063/1.3023155
105.
105. C. C. Chaston, C. W. Carlson, R. E. Ergun, and J. P. McFadden, Phys. Scr. T 84, 64 (2000).
http://dx.doi.org/10.1238/Physica.Topical.084a00064
106.
106. C. C. Chaston, J. W. Bonnell, C. W. Carlson, and J. P. McFadden, J. Geophys. Res. 108, 8003 doi:10.1029/2002JA009420 (2003).
http://dx.doi.org/10.1029/2002JA009420
107.
107. E.V. Mishin and M. Forster, Geophys. Res. Lett. 22, 1745 doi:10.1029/95GL01442 (1995).
http://dx.doi.org/10.1029/95GL01442
108.
108. E. D. Fredrickson, N. N. Gorelenkov, R. E. Bell, J. E. Menard, A. L. Roquemore, S. Kubota, N. A. Crocker, and W. Peebles, Nucl. Fusion 46, S926 (2006).
http://dx.doi.org/10.1088/0029-5515/46/10/S09
109.
109. L. Chen, Z. H. Lin, and R. White, Phys. Plasmas 8, 4713 (2001).
http://dx.doi.org/10.1063/1.1406939
110.
110. D. A. Gates, N. N. Gorelenkov, and R. B. White, Phys. Rev. Lett. 87, 205003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.205003
111.
111. R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).
http://dx.doi.org/10.1063/1.1761412
112.
112. C. S. Ng and A. Bhattacharjee, Astro Phys. J. 465, 845 (1996).
http://dx.doi.org/10.1086/177468
113.
113. J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, J. Plasma Phys. 29, 525 (1983).
http://dx.doi.org/10.1017/S0022377800000933
114.
114. P. Goldreich and S. Sridhar, Astro Phys. J. 485, 680 (1997).
http://dx.doi.org/10.1086/304442
115.
115. G. G. Howes, W. Dorland, S. C. Cowley, G. W. Hammett, E. Quataert, A. A. Schekochihin, and T. Tatsuno, Phys. Rev. Lett. 100, 065004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.065004
116.
116. S. D. Bale, P. J. Kellogg, F. S. Mozer, T. S. Horbury, and H. Reme, Phys. Rev. Lett. 94, 215002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.215002
117.
117. A. Hasegawa and L. Chen, Phys. Rev. Lett. 36, 1362 (1976).
http://dx.doi.org/10.1103/PhysRevLett.36.1362
118.
118. J. V. Hollweg, J. Geophys. Res. 99, 23431 doi:10.1029/94JA02185 (1994).
http://dx.doi.org/10.1029/94JA02185
119.
119. D. W. Auerbach, T. A. Carter, S. Vincena, and P. Popovich, Phys. Rev. Lett. 105, 135005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.135005
120.
120. B. C. Low, J. Geophys. Res. 106, 25142 doi:10.1029/2000JA004015 (2001).
http://dx.doi.org/10.1029/2000JA004015
121.
121. S. Colgate, J. Geophys. Res. 70, 3161 doi:10.1029/JZ070i013p03161 (1965).
http://dx.doi.org/10.1029/JZ070i013p03161
122.
122. P. A. Bernhardt, Phys. Fluids B 4, 2249 (1992).
http://dx.doi.org/10.1063/1.860193
123.
123. G. Haerendel, G. Paschmann, W. Baumjohann, C. W. Carlson, Nature 320, 720 (1986).
http://dx.doi.org/10.1038/320720a0
124.
124. M. A. Van Zeeland and W. Gekelman, Phys. Plasmas 11, 320 (2004);
124. A. Collette, W. Gekelman, A. Collette, and W. Gekelman, Phys. Rev. Lett. 105, 195003 (2010).
http://dx.doi.org/10.1063/1.1628233
125.
125. M. A. Van Zeeland, W. Gekelman, S. Vincena, and G. Dimonte, Phys. Rev. Lett. 87, 105001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.105001
126.
126. W. Gekelman, M. A. Van Zeeland, S. Vincena, and P. Pribyl, J. Geophys. Res. 108, A781 doi:10.1029/2002JA009741 (2003).
http://dx.doi.org/10.1029/2002JA009741
127.
127. S. Vincena, W. Gekelman, M. A. Van Zeeland, J. Maggs, and A. Collette, Phys. Plasmas 15, 072114 (2008).
http://dx.doi.org/10.1063/1.2956994
128.
128. M. A. Van Zeeland, W. Gekelman, S. Vincena, and J. Maggs, Phys. Plasmas 10, 1243 (2003).
http://dx.doi.org/10.1063/1.1564598
129.
129. W. Gekelman, A. Collette, and S. Vincena, Phys. Plasmas 14, 062109 (2007).
http://dx.doi.org/10.1063/1.2741462
130.
130. R. Ruytov, R. P. Drake, J. Kane, E. Laing, B. A. Remington, and W. M. Wood-Vasey, AstroPhys. J. 581, 821 (1991).
131.
131. P. M. Nielson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlok, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, Phys. Rev. Lett. 97, 255001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.255001
132.
132. P. M. Nielson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlok, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, Phys. Plasmas 15, 092701 (2008).
http://dx.doi.org/10.1063/1.2966115
133.
133. E. N. Parker, J. Geophys. Res. 62, 509 doi:10.1029/JZ062i004p00509 (1957).
http://dx.doi.org/10.1029/JZ062i004p00509
134.
134. W. Gekelman, R. L. Stenzel, and N. Wild, J. Geophys. Res. 87, 101 doi:10.1029/JA087iA01p00101 (1982).
http://dx.doi.org/10.1029/JA087iA01p00101
135.
135. C. D. Gregory, J. Howe, B. Loupias, S. Myers, M. M. Notley, Y. Sakawa, A. Oya, R. Kodama, M. Koenig, and N. C. Woolsy, AstroPhys. J. 676, 420 (2008).
136.
136. B. Roberts, Physics of Magnetic Flux Ropes, Geophysical Monograph Vol. 58, edited by C. T. Russell, E. R. Priest, and L. C. Lee (AGU Washington, DC, 1990), p. 113.
137.
137. J. Chen, R. A. Howard, G. E. Brueckner, R. Santaro, J. Krall, S. E. Paswaters, O. C. St. Syr, R. Schwenn, P. Lamy, and G. M. Simnett, AstroPhys. J. Lett. 490, L191 (1997).
http://dx.doi.org/10.1086/311029
138.
138. J. T. Gosling, Physics of Magnetic Flux Ropes, Geophysical Monograph Vol. 58, edited by C. T. Russell, E. R. Priest, and L. C. Lee (AGU Washington, DC, 1990), p. 343.
139.
139. W. Gekelman, J. Maggs, and H. Pfister, IEEE Trans. Plasma Sci. 20, 614 (1993).
http://dx.doi.org/10.1109/27.199501
140.
140. J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.1139
141.
141. T. Intrator, X. Sun, G. Lapenta, L. Dorf, and I. Furno, Nat. Phys. 5, 521 (2009).
http://dx.doi.org/10.1038/nphys1300
142.
142. E. Lawrence and W. Gekelman, Phys. Rev. Lett. 103, 105002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105002
143.
143. C. H. Mandrini, P. Démoulin, L. Driel-Gesztelya, B. Schneider, G. Cauzzi, A. Hoffan, Sol. Phys. 168, 115 (1996).
http://dx.doi.org/10.1007/BF00145829
144.
144. E. R. Priest and P. Démoulin, J. Geophys. Res. 100, 23443 (1995);
144. P. Démoulin, Adv. Space Res. 27, 1269 (2006).
http://dx.doi.org/10.1029/95JA02740
145.
145. V. S. Titov, G. Horning, and P. Démoulin, J. Geophys. Res. 107, 1164 doi:10.1029/2001JA000278 (2002).
http://dx.doi.org/10.1029/2001JA000278
146.
146. V. S. Titov, T. Forbes, E. Priest, Z. Mikic, and J. Linker, Astro Phys. J. 693, 1029 (2009);
http://dx.doi.org/10.1088%2F0004-637X%2F693%2F1%2F1029
146. P. Démoulin, Adv. Space Res. 37, 1269 (2006).
http://dx.doi.org/10.1016%2Fj.asr.2005.03.085
147.
147. M. Berger, Geophys. Astrophys. Fluid Dyn. 30, 79 (1984).
http://dx.doi.org/10.1080/03091928408210078
148.
148. W. Gekelman, E. Lawrence, A. Collette, B. Van Compernolle, P. Pribyl, M. Berger, and J. Campbell, Phys. Scr. T 142, 014032 (2010).
http://dx.doi.org/10.1088/0031-8949/2010/T142/014032
149.
149. S. Vincena, W. Gekelman, and J. Maggs, Phys. Plasmas 8, 3884 (2001).
http://dx.doi.org/10.1063/1.1389092
150.
150. See supplementary material at http://dx.doi.org/10.1063/1.3592210 which contains stereo image pairs, captions, and instructions for viewing. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3592210
Loading
/content/aip/journal/pop/18/5/10.1063/1.3592210
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/5/10.1063/1.3592210
2011-06-01
2015-09-03

Abstract

One of the fundamental waves in magnetized plasmas is the shear Alfvén wave. This wave is responsible for rearranging current systems and, in fact all low frequency currents in magnetized plasmas are shear waves. It has become apparent that Alfvén waves are important in a wide variety of physical environments. Shear waves of various forms have been a topic of experimental research for more than fifteen years in the large plasma device (LAPD) at UCLA. The waves were first studied in both the kinetic and inertial regimes when excited by fluctuating currents with transverse dimension on the order of the collisionless skin depth. Theory and experiment on wave propagation in these regimes is presented, and the morphology of the wave is illustrated to be dependent on the generation mechanism. Three-dimensional currents associated with the waves have been mapped. The ion motion, which closes the current across the magnetic field, has been studied using laser induced fluorescence. The wave propagation in inhomogeneous magnetic fields and density gradients is presented as well as effects of collisions and reflections from boundaries. Reflections may result in Alfvénic field line resonances and in the right conditions maser action. The waves occur spontaneously on temperature and density gradients as hybrids with drift waves. These have been seen to affect cross-field heat and plasma transport. Although the waves are easily launched with antennas, they may also be generated by secondary processes, such as Cherenkov radiation. This is the case when intense shear Alfvén waves in a background magnetoplasma are produced by an exploding laser-produced plasma. Time varying magnetic flux ropes can be considered to be low frequency shear waves. Studies of the interaction of multiple ropes and the link between magnetic field line reconnection and rope dynamics are revealed. This manuscript gives us an overview of the major results from these experiments and provides a modern prospective for the earlier studies of shear Alfvén waves.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/5/1.3592210.html;jsessionid=1kq2h8kj5ouer.x-aip-live-03?itemId=/content/aip/journal/pop/18/5/10.1063/1.3592210&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The many faces of shear Alfvén wavesa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/5/10.1063/1.3592210
10.1063/1.3592210
SEARCH_EXPAND_ITEM