1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Convective transport by intermittent blob-filaments: Comparison of theory and experiment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/6/10.1063/1.3594609
1.
1. S. J. Zweben, J. A. Boedo, O. Grulke, C. Hidalgo, B. LaBombard, R. J. Maqueda, P. Scarin, and J. L. Terry, Plasma Phys. Controlled Fusion 49, S1 (2007).
http://dx.doi.org/10.1088/0741-3335/49/7/S01
2.
2. B. A. Carreras, J. Nucl. Mater. 337-339, 315 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.034
3.
3. S. I. Krasheninnikov, D. A. D’Ippolito, and J. R. Myra, J. Plasma Phys. 74, 679 (2008).
http://dx.doi.org/10.1017/S0022377807006940
4.
4. O. E. Garcia, Plasma Fusion Res. 4, 019 (2009).
http://dx.doi.org/10.1585/pfr.4.019
5.
5. B. Lipschultz, X. Bonnin, G. Counsell, A. Kallenbach, A. Kukushkin, K. Krieger, A. Leonard, A. Loarte, R. Neu, R. A. Pitts, T. Rognlien, J. Roth, C. Skinner, J. L. Terry, E. Tsitrone, D. Whyte, S. Zweben, N. Asakura, D. Coster, R. Doerner, R. Dux, G. Federici, M. Fenstermacher, W. Fundamenski, P. Ghendrih, A. Herrmann, J. Hu, S. Krasheninnikov, G. Kirnev, A. Kreter, and B. L. V. Kurnaev, S. Lisgo, T. Nakano, N. Ohno, H. D. Pacher, J. Paley, Y. Pan, G. Pautasso, V. Philipps, V. Rohde, D. Rudakov, P. Stangeby, S. Takamura, T. Tanabe, Y. Yang, and S. Zhu, Nucl. Fusion 47, 1189 (2007).
http://dx.doi.org/10.1088/0029-5515/47/9/016
6.
6. H. Zohm, Plasma Phys. Controlled Fusion 38, 105 (1996).
http://dx.doi.org/10.1088/0741-3335/38/2/001
7.
7. D. H. J. Goodall, J. Nucl. Mater. 111-112, 11 (1982).
http://dx.doi.org/10.1016/0022-3115(82)90174-X
8.
8. S. J. Zweben, Phys. Fluids 28, 974 (1985).
http://dx.doi.org/10.1063/1.865069
9.
9. M. Endler, H. Niedermeyer, L. Giannone, E. Holzhauer, A. Rudyj, G. Theimer, N. Tsois, and the ASDEX Team, Nucl. Fusion 35, 1307 (1995).
http://dx.doi.org/10.1088/0029-5515/35/11/I01
10.
10. M. Endler, J. Nucl. Mater. 266-269, 84 (1999).
http://dx.doi.org/10.1016/S0022-3115(98)00659-X
11.
11. Y. Sarazin and P. Ghendrih, Phys. Plasmas 5, 4214 (1998).
http://dx.doi.org/10.1063/1.873157
12.
12. G. Y. Antar, S. I. Krasheninnikov, P. Devynck, R. P. Doerner, E. M. Hollmann, J. A. Boedo, S. C. Luckhardt, and R. W. Conn, Phys. Rev. Lett. 87, 065001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.065001
13.
13. M. V. Umansky, S. I. Krasheninnikov, B. LaBombard, and J. L. Terry, Phys. Plasmas 5, 3373 (1998).
http://dx.doi.org/10.1063/1.873051
14.
14. I. H. Hutchinson, R. Boivin, F. Bombarda, P. Bonoli, S. Fairfax, C. Fiore, J. Goetz, S. Golovato, R. Granetz, M. Greenwald, S. Horne, A. Hubbard, J. Irby, B. L. B. LaBombard, E. Marmar, G. McCracken, M. Porkolab, J. Rice, J. Snipes, Y. Takase, J. Terry, S. Wolfe, C. Christensen, D. Garnier, M. Graf, T. Hsu, T. Luke, M. May, A. Niemczewski, G. Tinios, J. Schachter, and J. Urbahn, Phys. Plasmas 1, 1511 (1994).
http://dx.doi.org/10.1063/1.870701
15.
15. S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001).
http://dx.doi.org/10.1016/S0375-9601(01)00252-3
16.
16. D. A. D’Ippolito, J. R. Myra, and S. I. Krasheninnikov, Phys. Plasmas 9, 222 (2002).
http://dx.doi.org/10.1063/1.1426394
17.
17. J. L. Luxon, Nucl. Fusion 42, 614 (2002).
http://dx.doi.org/10.1088/0029-5515/42/5/313
18.
18. J. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. M. A. Leonard, G. Porter, M. Tillack, and G. Antar, Phys. Plasmas 8, 4826 (2001).
http://dx.doi.org/10.1063/1.1406940
19.
19. D. L. Rudakov, J. A. Boedo, R. A. Moyer, S. I. Krasheninnikov, A. W. Leonard, M. A. Mahdavi, G. R. McKee, G. D. Porter, P. C. Stangeby, J. G. Watkins, W. P. West, D. G. Whyte, and G. Antar, Plasma Phys. Controlled Fusion 44, 717 (2002).
http://dx.doi.org/10.1088/0741-3335/44/6/308
20.
20. S. J. Zweben, D. P. Stotler, J. L. Terry, B. LaBombard, M. Greenwald, M. Muterspaugh, C. S. Pitcher, K. Hallatschek, R. J. Maqueda, B. Rogers, J. L. Lowrance, V. J. Mastrocola, and G. F. Renda, Phys. Plasmas 9, 1981 (2002).
http://dx.doi.org/10.1063/1.1445179
21.
21. J. L. Terry, S. J. Zweben, K. Hallatschek, B. LaBombard, R. J. Maqueda, B. Bai, C. J. Boswell, M. Greenwald, D. Kopon, W. M. Nevins, C. S. Pitcher, B. N. Rogers, D. P. Stotler, and X. Q. Xu, Phys. Plasmas 10, 1739 (2003).
http://dx.doi.org/10.1063/1.1564090
22.
22. M. Agostini, S. J. Zweben, R. Cavazzana, P. Scarin, G. Serianni, R. J. Maqueda, and D. P. Stotler, Phys. Plasmas 14, 102305 (2007).
http://dx.doi.org/10.1063/1.2776912
23.
23. M. Ono, S. M. Kaye, Y.-K. M. Peng, G. Barnes, W. Blanchard, M. D. Carter, J. Chrzanowski, L. Dudek, R. Ewig, D. Gates, R. E. Hatcher, T. Jarboe, S. C. Jardin, R. K. D. Johnson, M. Kalish, C. E. Kessel, H. W. Kugel, R. Maingi, R. Majeski, J. Manickam, B. McCormack, J. Menard, D. Mueller, B. A. Nelson, B. E. Nelson, C. Neumeyer, G. Oliaro, F. Paoletti, R. Parsells, E. Perry, N. Pomphrey, S. Ramakrishnan, R. Raman, G. Rewoldt, J. Robinson, A. L. Roquemore, P. Ryan, S. Sabbagh, D. Swain, E. J. Synakowski, M. Viola, M. Williams, J. R. Wilson, and NSTX Team, Nucl. Fusion 40, 557 (2000).
http://dx.doi.org/10.1088/0029-5515/40/3Y/316
24.
24. D. L. Rudakov, J. A. Boedo, R. A. Moyer, P. C. Stangeby, J. G. Watkins, D. G. Whyte, L. Zeng, N. H. Brooks, R. P. Doerner, T. E. Evans, M. E. Fenstermacher, M. Groth, E. M. Hollmann, S. I. Krasheninnikov, C. J. Lasnier, A. W. Leonard, M. A. Mahdavi, G. R. McKee, A. G. McLean, A. Yu. Pigarov, W. R. Wampler, G. Wang, W. P. West, and C. P. C. Wong, Nucl. Fusion 45, 1589 (2005).
http://dx.doi.org/10.1088/0029-5515/45/12/014
25.
25. R. A. Pitts, W. Fundamenski, S. K. Erents, Y. Andrew, A. Loarte, C. Silva, and JETEFDA contributors, Nucl. Fusion 46, 82 (2006).
http://dx.doi.org/10.1088/0029-5515/46/1/010
26.
26. M. Greenwald, Plasma Phys. Controlled Fusion 44, R27 (2002).
http://dx.doi.org/10.1088/0741-3335/44/8/201
27.
27. B. LaBombard, R. L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C. S. Pitcher, J. L. Terry, S. J. Zweben, and the Alcator Group, Phys. Plasmas 8, 2107 (2001).
http://dx.doi.org/10.1063/1.1352596
28.
28. B. LaBombard, J. W. Hughes, D. Mossessian, M. Greenwald, B. Lipshultz, J. L. Terry, and the Alcator C-Mod Team, Nucl. Fusion 45, 1658 (2005).
http://dx.doi.org/10.1088/0029-5515/45/12/022
29.
29. D. A. D’Ippolito, and J. R. Myra, Phys. Plasmas 13, 062503 (2006).
http://dx.doi.org/10.1063/1.2206168
30.
30. J. R. Myra, J. Boedo, B. Coppi, D. A. D’Ippolito, S. I. Krasheninnikov, B. P. LeBlanc, M. Lontano, R. Maqueda, D. A. Russell, D. P. Stotler, M. C. Varischetti, S. J. Zweben, and the NSTX Team, in Fusion Energy 2006, Proc. 21st Int. Conf. Chengdu, 2006, (IAEA, Vienna) CD-ROM file TH/P6-21 and http://wwwnaweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm.
31.
31. J. R. Myra, D. A. Russell, and D. A. D’Ippolito, Phys. Plasmas 15, 032304 (2008).
http://dx.doi.org/10.1063/1.2889419
32.
32. A. Kirk, H. R. Wilson, G. F. Counsell, R. Akers, E. Arends, S. C. Cowley, J. Dowling, B. Lloyd, M. Price, M. Walsh, and the MAST Team, Phys. Rev. Lett. 92, 245002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245002
33.
33. A. Kirk, N. B. Ayed, G. Counsell, B. Dudson, T. Eich, A. Herrmann, B. Koch, R. Martin, A. Meakins, S. Saarelma, R. Scannell, S. Tallents, M. Walsh, H. R. Wilson, and the MAST team, Plasma Phys. Cont. Fusion 48, B433 (2006).
http://dx.doi.org/10.1088/0741-3335/48/12B/S41
34.
34. J. L. Terry, I. Cziegler, A. E. Hubbard, J. A. Snipes, J. W. Hughes, M. J. Greenwald, B. LaBombard, Y. Lin, P. Phillips, and S. Wukitch, J. Nucl. Mater. 363-365, 994 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.266
35.
35. R. J. Maqueda and R. Maingi, Phys. Plasmas 16, 056117 (2009).
http://dx.doi.org/10.1063/1.3085798
36.
36. P. Migliucci, V. Naulin, and JET EFDA Contributors, Phys. Plasmas 17, 072507 (2010).
http://dx.doi.org/10.1063/1.3436608
37.
37. G. Q. Yu and S. I. Krasheninnikov, Phys. Plasmas 10, 4413 (2003).
http://dx.doi.org/10.1063/1.1616937
38.
38. D. A. D’Ippolito, J. R. Myra, S. I. Krasheninnikov, G. Q. Yu, and A. Yu. Pigarov, Contrib. Plasma Phys. 44, 205 (2004).
http://dx.doi.org/10.1002/ctpp.v44:1/3
39.
39. S. I. Krasheninnikov, D. Ryutov, and G. Yu, J. Plasma Fusion Res. 6, 139 (2004).
40.
40. D. A. Russell, D. A. D’Ippolito, J. R. Myra, W. M. Nevins, and X. Q. Xu, Phys. Rev. Lett. 93, 265001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.265001
41.
41. A. Y. Aydemir, Phys. Plasmas 12, 62503 (2005).
http://dx.doi.org/10.1063/1.1927539
42.
42. J. Madsen, J. Staerk, V. Naulin, J. J. Rasmussen, A. Kendl, O. E. Garcia, and A. H. Nielsen, Proceedings of the 33nd EPS Plasma Physics Conference. (1923 June 2006, Rome, Italy) (2006).
43.
43. D. Ryutov, Phys. Plasmas 13, 122307 (2006).
http://dx.doi.org/10.1063/1.2403092
44.
44. D. Jovanović, P. K. Shukla, and F. Pegoraro, Phys. Plasmas 15, 112305 (2008).
http://dx.doi.org/10.1063/1.3008050
45.
45. G. S. Xu, V. Naulin, W. Fundamenski, J. Juul Rasmussen, A. H. Nielsen, and B. N. Wan, Phys. Plasmas 17, 022501 (2010).
http://dx.doi.org/10.1063/1.3302535
46.
46. D. A. Russell, J. R. Myra, D. A. D’Ippolito, T. L. Munsat, Y. Sechrest, R. J. Maqueda, D. P. Stotler, S. J. Zweben, and B. P. LeBlanc, Phys. Plasmas 18, 022306 (2011).
http://dx.doi.org/10.1063/1.3553024
47.
47. S. I. Krasheninnikov, A. I. Smolyakov, G. Yu, and T. K. Soboleva, Czech. J. Phys. 55, 307 (2005).
http://dx.doi.org/10.1007/s10582-005-0043-9
48.
48. J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 12, 092511 (2005).
http://dx.doi.org/10.1063/1.2048847
49.
49. O. E. Garcia, N. H. Bian, and W. Fundamenski, Phys. Plasmas 13, 082309 (2006).
http://dx.doi.org/10.1063/1.2336422
50.
50. O. E. Garcia, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Scr. T122, 89 (2006).
http://dx.doi.org/10.1088/0031-8949/2006/T122/013
51.
51. J. R. Myra, D. A. Russell, and D. A. D’Ippolito, Phys. Plasmas 13, 112502 (2006).
http://dx.doi.org/10.1063/1.2364858
52.
52. O. E. Garcia, R. A. Pitts, J. Horacek, A. H. Nielsen, W. Fundamenski, J. P. Graves, V. Naulin, and J. Juul Rasmussen, J. Nucl. Mater. 363-365, 575 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2006.12.063
53.
53. D. A. Russell, J. R. Myra, and D. A. D’Ippolito, Phys. Plasmas 14, 102307 (2007).
http://dx.doi.org/10.1063/1.2780137
54.
54. S. I. Krasheninnikov, A. Yu. Pigarov, S. A. Galkin, G. Q. Yu, D. A. D’Ippolito, J. R. Myra, D. R. McCarthy, W. M. Nevins, T. D. Rognlien, X. Q. Xu, J. A. Boedo, D. L. Rudakov, M. J. Schaffer, W. P. West, and D. G. Whyte, Proceedings of the 19th IAEA Fusion Energy Conference, Lyon, France (IAEA, Vienna, 2003), paper IAEA-CN-94/TH/4-1 (2003)
55.
55. N. Bisai, A. Das, S. Deshpande, R. Jha, P. Kaw, A. Sen, and R. Singh, Phys. Plasmas 12, 102515 (2005).
http://dx.doi.org/10.1063/1.2083791
56.
56. J. R. Myra, Phys. Plasmas 14, 102314 (2007).
http://dx.doi.org/10.1063/1.2776900
57.
57. N. Bian, S. Benkadda, J.-V. Paulsen, and O. E. Garcia, Phys. Plasmas 10, 671 (2003).
http://dx.doi.org/10.1063/1.1541021
58.
58. O. E. Garcia, N. H. Bian, J.-V. Paulsen, S. Benkadda, and K. Rypdal, Plasma Phys. Controlled Fusion 45, 919 (2003).
http://dx.doi.org/10.1088/0741-3335/45/6/306
59.
59. O. E. Garcia, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Rev. Lett. 92, 165003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.165003
60.
60. N. Mahdizadeh, M. Ramisch, U. Stroth, C. Lechte, and B. D. Scott, Phys. Plasmas 11, 3932 (2004).
http://dx.doi.org/10.1063/1.1772378
61.
61. N. Bisai, A. Das, S. Deshpande, R. Jha, P. Kaw, A. Sen, and R. Singh, Phys. Plasmas 12, 072520 (2005).
http://dx.doi.org/10.1063/1.1942427
62.
62. O. E. Garcia, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Plasmas 12, 062309 (2005).
http://dx.doi.org/10.1063/1.1925617
63.
63. J. Anderson and E.-J. Kim, Phys. Plasmas 15, 122303 (2008).
http://dx.doi.org/10.1063/1.3036932
64.
64. J. A. Krommes, Phys. Plasmas 15, 030703 (2008).
http://dx.doi.org/10.1063/1.2894560
65.
65. S. Servidio, L. Primavera, V. Carbone, A. Noullez, and K. Rypdal, Phys. Plasmas 15, 012301 (2008).
http://dx.doi.org/10.1063/1.2825656
66.
66. I. Sandberg, S. Benkadda, X. Garbet, G. Ropokis, K. Hizanidis, and D. del-Castillo-Negrete, Phys. Rev. Lett. 103, 165001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.165001
67.
67. D. A. D’Ippolito, and J. R. Myra, Phys. Plasmas 10, 4029 (2003).
http://dx.doi.org/10.1063/1.1606447
68.
68. D. A. D’Ippolito, J. R. Myra, D. A. Russell, and G. Q. Yu, Phys. Plasmas 11, 4603 (2004).
http://dx.doi.org/10.1063/1.1785791
69.
69. J. R. Myra, D. A. D’Ippolito, S. I. Krasheninnikov, and G. Q. Yu, Phys. Plasmas 11, 4267 (2004).
http://dx.doi.org/10.1063/1.1774168
70.
70. G. Q. Yu, S. I. Krasheninnikov, and P. N. Guzdar, Phys. Plasmas 13, 042508 (2006).
http://dx.doi.org/10.1063/1.2193087
71.
71. S. I. Krasheninnikov and A. I. Smolyakov, Phys. Plasmas 10, 3020 (2003).
http://dx.doi.org/10.1063/1.1579692
72.
72. S. I. Krasheninnikov, A. I. Smolyakov, and T. K. Soboleva, Phys. Plasmas 12, 072502 (2005).
http://dx.doi.org/10.1063/1.1940061
73.
73. R. H. Cohen and D. D. Ryutov, Contrib. Plasma Phys. 46, 678 (2006).
http://dx.doi.org/10.1002/ctpp.v46:7/9
74.
74. R. H. Cohen, B. LaBombard, D. D. Ryutov, J. L. Terry, M. V. Umansky, X. Q. Xu, and S. Zweben, Nucl. Fusion 47, 612 (2007).
http://dx.doi.org/10.1088/0029-5515/47/7/012
75.
75. D. D. Ryutov and R. H. Cohen, Contrib. Plasma Phys. 48, 48 (2008).
http://dx.doi.org/10.1002/ctpp.v48:1/3
76.
76. D. D. Ryutov and R. H. Cohen, Contrib. Plasma Phys. 44, 168 (2004).
http://dx.doi.org/10.1002/ctpp.v44:1/3
77.
77. M. V. Umansky, T. D. Rognlien, X. Q. Xu, R. H. Cohen, and W. M. Nevins, Contrib. Plasma Phys. 44, 182 (2004).
http://dx.doi.org/10.1002/ctpp.v44:1/3
78.
78. R. H. Cohen and D. D. Ryutov, Plasma Phys. Controlled Fusion 47, 1187 (2005).
http://dx.doi.org/10.1088/0741-3335/47/8/004
79.
79. P. Ghendrih, Y. Sarazin, G. Attuel, S. Benkadda, P. Beyer, G. Falchetto, C. Figarella, X. Garbet, V. Grandgirard, and M. Ottaviani, Nucl. Fusion 43, 1013 (2003).
http://dx.doi.org/10.1088/0029-5515/43/10/001
80.
80. S. I. Krasheninnikov and A. I. Smolyakov, Phys. Plasmas 14, 102503 (2007).
http://dx.doi.org/10.1063/1.2780134
81.
81. D. A. Russell, J. R. Myra, and D. A. D’Ippolito, Phys. Plasmas 16, 122304 (2009).
http://dx.doi.org/10.1063/1.3270051
82.
82. J. R. Myra, D. A. Russell, D. A. D’Ippolito, J.-W. Ahn, R. Maingi, R. J. Maqueda, J. Boedo, D. P. Lundberg, D. P. Stotler, S. J. Zweben, M. Umansky, and the NSTX team, Phys. Plasmas 18, 012305 (2011).
http://dx.doi.org/10.1063/1.3526676
83.
83. D. A. D’Ippolito, and J. R. Myra, Phys. Plasmas 15, 082316 (2008).
http://dx.doi.org/10.1063/1.2974802
84.
84. S. I. Krasheninnikov, A. Yu. Pigarov, T. K. Soboleva, and D. L. Rudakov, Phys. Plasmas 16, 014501 (2009).
http://dx.doi.org/10.1063/1.3050076
85.
85. B. Coppi, D. A. D’Ippolito, S. I. Krasheninnikov, M. Lontano, J. R. Myra, P. Nataf, and D. A. Russell, Proceedings of the 33rd EPS Conference on Plasma Physics, Rome, 1923 June, 2006 ECA Vol. 30I, O-4.017 (2006).
86.
86. W. Fundamenski, O. E. Garcia, V. Naulin, R. A. Pitts, A. H. Nielsen, J. J. Rasmussen, J. Horacek, J. P. Graves, and JET EFDA contributors, Nucl. Fusion 47, 417 (2007).
http://dx.doi.org/10.1088/0029-5515/47/5/006
87.
87. P. B. Parks, Nucl. Fusion 32, 2137 (1992).
http://dx.doi.org/10.1088/0029-5515/32/12/I05
88.
88. X. Q. Xu, W. M. Nevins, R. H. Cohen, J. R. Myra, and P. B. Snyder, New J. Phys. 4, 53 (2002).
http://dx.doi.org/10.1088/1367-2630/4/1/353
89.
89. R. V. Shurygin, Plasma Phys. Rep. 32, 799 (2006).
http://dx.doi.org/10.1134/S1063780X06100011
90.
90. G. T.A. Huysmans and O. Czarny, Nucl. Fusion 47, 659 (2007).
http://dx.doi.org/10.1088/0029-5515/47/7/016
91.
91. B. D. Dudson, N. B. Ayed, A. Kirk, H. R. Wilson, G. Counsell, X. Xu, M. Umansky, P. B. Snyder, B. Lloyd, and the MAST team, Plasma Phys. Controlled Fusion 50, 124012 (2008).
http://dx.doi.org/10.1088/0741-3335/50/12/124012
92.
92. A. I. Smolyakov and S. I. Krasheninnikov, Phys. Plasmas 15, 072302 (2008).
http://dx.doi.org/10.1063/1.2937463
93.
93. O. E. Garcia, J. Horacek, R. A. Pitts, A. H. Nielsen, W. Fundamenski, V. Naulin, and J. J. Rasmussen, Nucl. Fusion 47, 667 (2007).
http://dx.doi.org/10.1088/0029-5515/47/7/017
94.
94. V. Naulin, W. Fundamenski., A. H. Nielsen, J. Juul Rasmussen, O. E. Garcia, B. Gonçalves, C. Hidalgo, M. Hron, and JET-EFDA Contributors, Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, 2006) (IAEA, Vienna) CD-ROM file TH/P6-22.
95.
95. R. A. Pitts, J. Horacek, W. Fundamenski, O. E. Garcia, A. H. Nielsen, M. Wischmeier, V. Naulin, and J. Juul Rasmussen, J. Nucl. Mater. 363-365, 505 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2006.12.065
96.
96. S. Sugita, M. Yagi, S.-I. Itoh, and K. Itoh, Plasma Fus. Res. 3, 040 (2008).
http://dx.doi.org/10.1585/pfr.3.040
97.
97. S. Benkadda, T. Dudok de Wit, A. Sen, ASDEX team, and X. Garbet, Phys. Rev. Lett 73, 3403 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3403
98.
98. Y. Sarazin, P. Ghendrih, G. Attuel, C. Clément, X. Garbet, V. Grandgirard, M. Ottaviani, S. Benkadda, P. Beyer, N. Bian, and C. Figarella, J. Nucl. Mater. 313-316, 796 (2003).
http://dx.doi.org/10.1016/S0022-3115(02)01437-X
99.
99. P. Ghendrih, Y. Sarazin, G. Attuel, S. Benkadda, P. Beyer, G. Darmet, G. Falchetto, C. Figarella, X. Garbet, V. Grandgirard, and M. Ottaviani, J. Nucl. Mater. 337-339, 347 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.068
100.
100. O. E. Garcia, J. Horacek, R. A. Pitts, A. H. Nielsen, W. Fundamenski, J. P. Graves, V. Naulin, and J. J. Rasmussen, Plasma Phys. Controlled Fusion 48, L1 (2006).
http://dx.doi.org/10.1088/0741-3335/48/1/L01
101.
101. D. A. D’Ippolito, J. Boedo, D. P. Lundberg, R. Maqueda, J. R. Myra, D. A. Russell, D. P. Stotler, and S. J. Zweben, Plasma Physics and Controlled Nuclear Fusion Research 2008 (IAEA, Vienna, 2009), paper IAEA-CN-165-TH/P4-17.
102.
102. B. Li, B. N. Rogers, P. Ricci, and K. W. Gentle, Phys. Plasmas 16, 082510 (2009).
http://dx.doi.org/10.1063/1.3212591
103.
103. S. Ishiguro and H. Hasegawa, J. Plasma Phys. 72, 1233 (2006).
http://dx.doi.org/10.1017/S0022377806006003
104.
104. V. Naulin, T. Windisch, and O. Grulke, Phys. Plasmas 15, 012307 (2008).
http://dx.doi.org/10.1063/1.2829603
105.
105. A. Yu. Pigarov, S. I. Krasheninnikov, T. D. Rognlien, M. J. Schaffer, and W. P. West, Phys. Plasmas 9, 1287 (2002).
http://dx.doi.org/10.1063/1.1459059
106.
106. A. Yu. Pigarov, S. I. Krasheninnikov, W. P. West, T. D. Rognlien, J. A. Boedo, D. G. Whyte, C. J. Lasnier, T. W. Petrie, M. J. Schaffer, and J. G. Watkins, J. Nucl. Mater. 313-316, 1076 (2003).
http://dx.doi.org/10.1016/S0022-3115(02)01540-4
107.
107. A. Yu. Pigarov, S. I. Krasheninnikov, T. D. Rognlien, W. P. West, B. LaBombard, B. Lipschultz, R. Maingi, and V. Soukhanovskii, Contrib. Plasma Phys. 44, 228 (2004).
http://dx.doi.org/10.1002/ctpp.v44:1/3
108.
108. A. Yu. Pigarov, E. M. Hollmann, S. I. Krasheninnikov, T. D. Rognlien, and W. P. West, J. Nucl. Mater. 337-339, 371 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.060
109.
109. A. V. Nedospasov, Sov. J. Plasma Phys. 15, 659 (1989).
110.
110. X. Garbet, L. Laurent, J.-P. Roubin, and A. Samain, Nucl. Fusion 31, 967 (1991).
http://dx.doi.org/10.1088/0029-5515/31/5/015
111.
111. J. R. Myra, D. A. D’Ippolito, X. Q. Xu, and R. H. Cohen, Phys. Plasmas 7, 2290 (2000).
http://dx.doi.org/10.1063/1.874125
112.
112. J. R. Myra, D. A. D’Ippolito, X. Q. Xu, and R. H. Cohen, Phys. Plasmas 7, 4622 (2000).
http://dx.doi.org/10.1063/1.1314623
113.
113. X. Q. Xu, R. H. Cohen, T. D. Rognlien, and J. R. Myra, Phys. Plasmas 7, 1951 (2000).
http://dx.doi.org/10.1063/1.874044
114.
114. M. N. Rosenbluth and C. L. Longmire, Ann. Phys. 1, 120 (1957).
http://dx.doi.org/10.1016/0003-4916(57)90055-6
115.
115. G. Tonetti, A. Heym, F. Hofmann, C. Hollenstein, J. Koechili, K. Lahlou, J. B. Lister, P. Marmillod, J. M. Mayor, J. C. Magnin, F. Marcus, and R. Rage, Proceedings of the 16th Symposium on Fusion Technology, edited by R. Hemsworth (North-Holland, Amsterdam, 1991), p. 587.
116.
116. P. T. Lang, K. Büchl, M. Kaufmann, R. S. Lang, V. Mertens, H. W. Müller, J. Neuhauser, and ASDEX Upgrade and NBI Teams, Phys. Rev. Lett. 79, 1487 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1487
117.
117. P. B. Parks, W. D. Sessions, and L. R. Baylor, Phys. Plasmas 7, 1968 (2000).
http://dx.doi.org/10.1063/1.874052
118.
118. T. Huld, A. H. Nielsen, H. L. Pécseli, and J. J. Rasmussen, Phys. Fluids B 3, 1609 (1991).
http://dx.doi.org/10.1063/1.859680
119.
119. O. Grulke, T. Klinger, M. Endler, A. Piel, and the W7-AS Team, Phys. Plasmas 8, 5171 (2001).
http://dx.doi.org/10.1063/1.1418021
120.
120. M. Kotschenreuther, T. Rognlien, and P. Valanju, Fus. Eng. Design 72, 169 (2004).
http://dx.doi.org/10.1016/j.fusengdes.2004.07.016
121.
121. O. E. Garcia, N. H. Bian, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Phys. Plasmas 12, 090701 (2005).
http://dx.doi.org/10.1063/1.2044487
122.
122. A. J. Wootton, B. A. Carreras, H. Matsumoto, K. McGuire, W. A. Peebles, C. P. Ritz, P. W. Terry, and S. J. Zweben, Phys. Fluids B 2, 2879 (1990).
http://dx.doi.org/10.1063/1.859358
123.
123. C. Hidalgo, Plasma Phys. Controlled Fusion 37, A53 (1995).
http://dx.doi.org/10.1088/0741-3335/37/11A/004
124.
124. J. A. Boedo, J. Nucl. Mater. 390-391, 29 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.040
125.
125. Y. H. Xu, S. Jachmich, R. R. Weynants, and the TEXTOR team, Plasma Phys. Controlled Fusion 47, 1841 (2005).
http://dx.doi.org/10.1088/0741-3335/47/10/014
126.
126. J. Cheng, L. W. Yan, W. Y. Hong, K. J. Zhao, T. Lan, J. Qian, A. D. Liu, H. L. Zhao, Yi Liu, Q. W. Yang, J. Q. Dong, X. R. Duan, and Y. Liu, Plasma Phys. Controlled Fusion 52, 055003 (2010).
http://dx.doi.org/10.1088/0741-3335/52/5/055003
127.
127. G. Y. Antar, G. Counsell, and J.-W. Ahn, Phys. Plasmas 12, 082503 (2005).
http://dx.doi.org/10.1063/1.1953592
128.
128. R. J. Maqueda, D. P. Stotler, S. J. Zweben and The NSTX team, “Intermittency in the scrape-off layer of the National Spherical Torus Experiment during H-mode confinement,” J. Nucl. Mater. (in press).
129.
129. J. A. Boedo, D. L. Rudakov, R. A. Moyer, G. R. McKee, R. J. Colchin, M. J. Schaffer, P. G. Stangeby, W. P. West, S. L. Allen, T. E. Evans, R. J. Fonck, E. M. Hollmann, S. Krasheninnikov, A. W. Leonard, W. Nevins, M. A. Mahdavi, G. D. Porter, G. R. Tynan, D. G. Whyte, and X. Xu, Phys. Plasmas 10, 1670 (2003).
http://dx.doi.org/10.1063/1.1563259
130.
130. T. A. Carter, Phys. Plasmas 13, 10701 (2006).
http://dx.doi.org/10.1063/1.2158929
131.
131. N. Katz, J. Egedal, W. Fox, A. Le, and M. Porkolab, Phys. Rev. Lett. 101, 015003 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.015003
132.
132. I. Furno, B. Labit, M. Podestà, A. Fasoli , S. H. Müller, F. M. Poli, P. Ricci, C. Theiler, S. Brunner, A. Diallo, and J. Graves, Phys. Rev. Lett. 100, 055004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.055004
133.
133. J. A. Boedo, D. L. Rudakov, R. J. Colchin, R. A. Moyer, S. Krasheninnikov, D. G. Whyte, G. R. McKee, G. Porter, M. J. Schaffer, P. G. Stangeby, W. P. West, S. L. Allen, and A. W. Leonard, J. Nucl. Mater. 313-316, 813 (2003).
http://dx.doi.org/10.1016/S0022-3115(02)01443-5
134.
134. S. J. Zweben, R. J. Maqueda, D. P. Stotler, A. Keesee, J. Boedo, C. E. Bush, S. M. Kaye, B. LeBlanc, J. L. Lowrance, V. J. Mastrocola, R. Maingi, N. Nishino, G. Renda, D. W. Swain, J. B. Wilgen, and the NSTX Team, Nucl. Fusion 44, 134 (2004).
http://dx.doi.org/10.1088/0029-5515/44/1/016
135.
135. J. R. Myra, D. A. D’Ippolito, D. P. Stotler, S. J. Zweben, B. P. LeBlanc, J. E. Menard, R. Maqueda, and J. Boedo, Phys. Plasmas 13, 092509 (2006).
http://dx.doi.org/10.1063/1.2355668
136.
136. R. J. Maqueda, D. P. Stotler, and the NSTX Team, Nucl. Fusion 50, 075002 (2010).
http://dx.doi.org/10.1088/0029-5515/50/7/075002
137.
137. J. L. Terry, N. P. Basse, I. Cziegler, M. Greenwald, O. Grulke, B. LaBombard, S. J. Zweben, E. M. Edlund, J. W. Hughes, L. Lin, Y. Lin, M. Porkolab, M. Sampsell, B. Veto, and S. J. Wukitch, Nucl. Fusion 45, 1321 (2005).
http://dx.doi.org/10.1088/0029-5515/45/11/013
138.
138. O. Grulke, J. L. Terry, B. LaBombard, and S. J. Zweben, Phys. Plasmas 13, 012306 (2006).
http://dx.doi.org/10.1063/1.2164991
139.
139. J. L. Terry, B. LaBombard, B. Lipschultz, M. J. Greenwald, J. E. Rice, and S. J. Zweben, Fusion Sci. Tech. 51, 342 (2007).
140.
140. J. L. Terry, S. J. Zweben, M. V. Umansky, I. Cziegler, O. Grulke, B. LaBombard, and D. P. Stotler, J. Nucl. Mater. 390, 339 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.152
141.
141. O. Grulke, J. L. Terry, B. LaBombard, I. Cziegler, and S. J. Zweben, “Parallel correlation of turbulent fluctuations in the SOL of Alcator C-Mod, ” in Proceedings of the 37th EPS Conference on Plasma Physics, (EPS, Dublin, 2010), paper P1-1036.
142.
142. B. Gonçalves, C. Hidalgo, C. Silva, M. A. Pedrosa, and K. Erents, J. Nucl. Mater. 337-339, 376 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.09.062
143.
143. C. Silva, B. Gonçalves, C. Hidalgo, M. A. Pedrosa, W. Fundamenski, M. Stamp, R. A. Pitts and JET-EFDA contributors, J. Nucl. Mater. 390-391, 355 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.068
144.
144. G. S. Xu, V. Naulin, W. Fundamenski, C. Hidalgo, J. A. Alonso, C. Silva, B. Goncalves, A. H. Nielsen, J. J. Rasmussen, S. I. Krasheninnikov, B. N. Wan, M. Stamp, and JET EFDA Contributors, Nucl. Fusion 49, 092002 (2009).
http://dx.doi.org/10.1088/0029-5515/49/9/092002
145.
145. Y. Xu, R. R. Weynants, S. Jachmich, M. V. Schoor, M. Vergote, P. Peleman, M. W. Jakubowski, M. Mitri, D. Reiser, B. Unterberg, and K. H. Finken (the TEXTOR team), Phys. Rev. Lett. 97, 165003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.165003
146.
146. Y. Xu, R. R. Weynants, M. V. Schoor, S. J. M. Vergote, M. W. Jakubowski, M. Mitri, O. Schmitz, B. Unterberg, P. Beyer, D. Reiser, K. H. Finken, M. Lehnen, and the TEXTOR Team, Nucl. Fusion 49, 035005 (2009).
http://dx.doi.org/10.1088/0029-5515/49/3/035005
147.
147. Y. Xu, R. R. Weynants, M. Van Schoor, M. Vergote, S. Jachmich, M. W. Jakubowski, M. Mitri, D. Reiser, O. Schmitz, K. H. Finken, M. Lehnen, B. Unterberg, D. Reiter, U. Samm, and The TEXTOR team, J. Nucl. Mater. 390-391, 372 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.079
148.
148. N. Asakura, Y. Koide, and K. Itami, J. Nucl. Mater. 220-222, 104 (1995).
http://dx.doi.org/10.1016/0022-3115(94)00639-3
149.
149. N. Asakura, N. Ohno, H. Tanaka, H. Kawashima, and T. Nakano, J. Nucl. Mater. 390-391, 364 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.073
150.
150. H. Tanaka, N. Ohno, N. Asakura, Y. Tsuji, H. Kawashima, S. Takamura, Y. Uesugi, and the JT-60U Team, Nucl. Fusion 49, 065017 (2009).
http://dx.doi.org/10.1088/0029-5515/49/6/065017
151.
151. P. Devynck, P. Ghendrih, and Y. Sarazin, Phys. Plasmas 12, 050702 (2005).
http://dx.doi.org/10.1063/1.1894399
152.
152. M. Farge, K. Schneider, and P. Devynck, Phys. Plasmas 13, 042304 (2006).
http://dx.doi.org/10.1063/1.2172350
153.
153. J. P. Gunn, C. Boucher, M. Dionne, I. ˇDuran, V. Fuchs, T. Loarer, I. Nanobashvili, R. Pánek, J.-Y. Pascal, F. Saint-Laurent, J. Stöckel, T. V. Rompuy, R. Zagórski, J. Adámek, J. Bucalossi, G. Ciraolo, and P. D. R. Dejarnac, Ph. Ghendrih, P. Hertout, M. Hron, P. Moreau, B. Pégourié, F. Rimini, Y. Sarazin, A. Sarkissian, G. Van Oost, “Links Between Wide Scrape-Off Layers, Large Parallel Flows, and Bursty Transport in TokamaksPlasma Physics and Controlled Nuclear Fusion Research 2006 (IAEA, Vienna, 2007), paper IAEA-CN-149-EX/P4-9.
154.
154. I. Nanobashvili, J. P. Gunn, and P. Devynck, J. Nucl. Mater. 363-365, 622 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.093
155.
155. N. Fedorczak, J. P. Gunn, P. Ghendrih, and A. P. P. Monier-Garbet, J. Nucl. Mater. 390-391, 368 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.076
156.
156. J. P. Graves, J. Horacek, R. A. Pitts, and K. I. Hopcraft, Plasma Phys. Controlled Fusion 47, L1 (2005).
http://dx.doi.org/10.1088/0741-3335/47/3/L01
157.
157. O. E. Garcia, R. A. Pitts, J. Horacek, J. Madsen, V. Naulin, A. H. Nielsen, and J. J. Rasmussen, Plasma Phys. Controlled Fusion 49, B47 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S03
158.
158. G. S. Kirnev, V. P. Budaev, S. A. Grashin, E. V. Gerasimov, and L. N. Khimchenko, Plasma Phys. Controlled Fusion 46, 621 (2004).
http://dx.doi.org/10.1088/0741-3335/46/4/004
159.
159. G. S. Kirnev, V. P. Budaev, S. A. Grashin, E. V. Gerasimov, and L. N. Khimchenko, J. Nucl. Mater. 337-339, 352 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.10.143
160.
160. G. S. Kirnev, V. P. Budaev, S. A. Grashin, L. N. Khimchenko, and D. V. Sarytchev, Nucl. Fusion 45, 459 (2005).
http://dx.doi.org/10.1088/0029-5515/45/6/007
161.
161. G. Y. Antar, G. Counsell, J.-W. Ahn, Y. Yang, M. Price, A. Tabasso, and A. Kirk, Phys. Plasmas 12, 032506 (2005).
http://dx.doi.org/10.1063/1.1861894
162.
162. B. Hnat, B. D. Dudson, R. O. Dendy, G. F. Counsell, A. Kirk, and the MAST team, Nucl. Fusion 48, 085009 (2008).
http://dx.doi.org/10.1088/0029-5515/48/8/085009
163.
163. N. Ben-Ayed, A. Kirk, B. Dudson, S. Tallents, R. G. L. Vann, H. R. Wilson, and the MAST team, Plasma Phys. Controlled Fusion 51, 035016 (2009).
http://dx.doi.org/10.1088/0741-3335/51/3/035016
164.
164. M. V. A. P. Heller, Z. A. Brasilio, I. L. Caldas, and J. P. J. Stockel, Phys. Plasmas 6, 846 (1999).
http://dx.doi.org/10.1063/1.873324
165.
165. E. Martines, M. Hron, and J. Stockel, Plasma Phys. Controlled Fusion 44, 351 (2002).
http://dx.doi.org/10.1088/0741-3335/44/3/305
166.
166. P. Devynck, G. Bonhomme, E. Martines, J. Stöckel, G. Van Oost, I. Voitsekhovitch, J. Adámek, A. Azeroual, F. Doveil, I. Duran, E. Gravier, J. Gunn, and M. Hron, Plasma Phys. Controlled Fusion 47, 269 (2005).
http://dx.doi.org/10.1088/0741-3335/47/2/005
167.
167. P. Devynck, J. Brotankova, P. Peleman, M. Spolaore, H. Figueiredo, M. Hron, G. Kirnev, E. Martines, J. Stöckel, G. Van Oost, and V. Weinzettl, Phys. Plasmas 13, 102505 (2006).
http://dx.doi.org/10.1063/1.2359721
168.
168. G. Y. Antar, M. Tsalas, E. Wolfrum, V. Rohde, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 50, 095012 (2008).
http://dx.doi.org/10.1088/0741-3335/50/9/095012
169.
169. B. Nold, G. D. Conway, T. Happel, H. W. Müller, M. Ramisch, V. Rohde, U. Stroth, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 52, 065005 (2010).
http://dx.doi.org/10.1088/0741-3335/52/6/065005
170.
170. R. Jha, P. K. Kaw, S. K. Mattoo, C. V. S. Rao, Y. C. Saxena, and the ADITYA team, Phys. Rev. Lett. 69, 1375 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1375
171.
171. R. Jha, S. K. Mattoo, and Y. C. Saxena, Phys. Plasmas 4, 2982 (1997).
http://dx.doi.org/10.1063/1.872431
172.
172. B. K. Joseph, R. Jha, P. K. Kaw, S. K. Mattoo, C. V. S. Rao, Y. C. Saxena, and the Aditya Team, Phys. Plasmas 4, 4292 (1997).
http://dx.doi.org/10.1063/1.872611
173.
173. R. Jha, P. K. Kaw, D. R. Kulkarni, and J. C. Parikh, Phys. Plasmas 10, 699 (2003).
http://dx.doi.org/10.1063/1.1541607
174.
174. S. K. Saha and S. Chowdhury, Phys. Plasmas 13, 092512 (2006).
http://dx.doi.org/10.1063/1.2356481
175.
175. S. K. Saha and S. Chowdhury, Phys. Plasmas 15, 012305 (2008).
http://dx.doi.org/10.1063/1.2828479
176.
176. V. Budaev, Y. Kikuchi, Y. Uesugi, and S. Takamura, Nucl. Fusion 44, S108 (2004).
http://dx.doi.org/10.1088/0029-5515/44/6/S11
177.
177. G. S. Xu, B. N. Wan, W. Zhang, Q. W. Yang, L. Wang, and Y. Z. Wen, Phys. Plasmas 13, 102509 (2006).
http://dx.doi.org/10.1063/1.2357045
178.
178. L. Dong, L. Wang, C. Feng, Z. Li, Q. Zhao, and G. Wang, Phys. Rev. E 57, 5929 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.5929
179.
179. H. Q. Liu, K. Hanada, N. Nishino, R. Ogata, M. Ishiguro, H. Zushi, K. Nakamura, M. Sakamoto, H. Idei, A. Fujisawa, M. Hasegawa, Y. Higashizono, S. Kawasaki, H. Nakashima, A. Higashijima, and QUEST Group, “Study of blob-like structures in QUEST,” J. Nucl. Mater. (in press).
180.
180. N. Ohno, S. Masuzaki, H. Miyoshi, S. Takamura, V. P. Budaev, T. Morisaki, N. Ohyabu, and A. Komori, Contrib. Plasma Phys. 467-469, 692 (2006).
http://dx.doi.org/10.1002/ctpp.v46:7/9
181.
181. K. Tanaka, C. Michael, A. L. Sanin, L. N. Vyacheslavov, K. Kawahata, S. Murakami, A. Wakasa, S. Okajima, H. Yamada, M. Shoji, J. Miyazawa, S. Morita, T. Tokuzawa, T. Akiyama, M. Goto, K. Ida, M. Yoshinuma, I. Yamada, M. Yokoyama, S. Masuzaki, T. Morisaki, R. Sakamoto, H. Funaba, S. Inagaki, M. Kobayashi, A. Komori, and LHD experimental group, Nucl. Fusion 46, 110 (2006).
http://dx.doi.org/10.1088/0029-5515/46/1/013
182.
182. J. M. Dewhurst, B. Hnat, N. Ohno, R. O. Dendy, S. Masuzake, T. Morisake, and A. Komori, Plasma Phys. Controlled Fusion 50, 095013 (2008).
http://dx.doi.org/10.1088/0741-3335/50/9/095013
183.
183. N. P. Basse, S. Zoletnik, P. K. Michelsen, and the W7-AS Team, Phys. Plasmas 12, 012507 (2005).
http://dx.doi.org/10.1063/1.1818142
184.
184. T. Happel, F. Greiner, N. Mahdizadeh, B. Nold, M. Ramisch, and U. Stroth, Phys. Rev. Lett. 102, 255001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.255001
185.
185. J. A. Alonso, S. J. Zweben, P. Carvalho, J.L. de Pablos, E. de la Cal, C. Hidalgo, T. Klinger, B. P. v. Milligen, R. J. Maqueda, M. A. Pedrosa, C. Silva, M. Spolaore, H. Thomsen, and the TJ-II team, Plasma Phys. Controlled Fusion 48, B465 (2006).
http://dx.doi.org/10.1088/0741-3335/48/12B/S44
186.
186. J. A. Alonso, S. J. Zweben, J.L. de Pablos, E. de la Cal, C. Hidalgo, T. Klinger, B. Ph. Van Milligen, M. A. Pedrosa, C. Silva, H. Thomsen, Fusion Sci. Technol. 50, 301 (2006).
187.
187. V. Antoni, V. Carbone, R. Cavazzana, G. Regnoli, N. Vianello, E. Spada, L. Fattorini, E. Martines, G. Serianni, M. Spolaore, L. Tramontin, and P. Veltri, Phys. Rev. Lett. 87, 045001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.045001
188.
188. M. Spolaore, V. Antoni, R. Cavazzana, G. Regnoli, G. Serianni, E. Spada, N. Vianello, H. Bergsåker, and J. R. Drake, Phys. Plasmas 9, 4110 (2002).
http://dx.doi.org/10.1063/1.1506310
189.
189. M. Spolaore, V. Antoni, E. Spada, H. Bergsaker, R. Cavazzana, J. R. Drake, E. Martines, G. Regnoli, G. Serianni, and N. Vianello, Phys. Rev. Lett. 93, 215003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.215003
190.
190. F. Sattin, P. Scarin, M. Agostini, R. Cavazzana, G. Serianni, M. Spolaore, and N. Vianello, Plasma Phys. Controlled Fusion 48, 1033 (2006).
http://dx.doi.org/10.1088/0741-3335/48/7/011
191.
191. M. Agostini, P. Scarin, R. Cavazzana, F. Sattin, G. Serianni, M. Spolaore, and N. Vianello, Plasma Phys. Controlled Fusion 51, 105003 (2009).
http://dx.doi.org/10.1088/0741-3335/51/10/105003
192.
192. M. Spolaore, N. Vianello, M. Agostini, R. Cavazzana, E. Martines, G. Serianni, P. Scarin, E. Spada, M. Zuin, and V. Antoni, J. Nucl. Mater. 390-391, 448 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.132
193.
193. M. Spolaore, N. Vianello, M. Agostini, R. Cavazzana, E. Martines, P. Scarin, G. Serianni, E. Spada, M. Zuin, and V. Antoni, Phys. Rev. Lett. 102, 165001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.165001
194.
194. V. Antoni, H. Bergsåker, R. Cavazzana, V. Carbone, J. Drake, E. Martines, G. Regnoli, G. Serianni, E. Spada, M. Spolaore, and N. Vianello, Contrib. Plasma Phys. 44, 458 (2004).
http://dx.doi.org/10.1002/ctpp.v44:5/6
195.
195. N. Vianello, M. Spolaore, G. Serianni, H. Bergsåker, V. Antoni, and J. R. Drake, Plasma Phys. Controlled Fusion 44, 2513 (2002).
http://dx.doi.org/10.1088/0741-3335/44/12/302
196.
196. R. Cavazzana, G. Serianni, P. Scarin, M. Agostini, N. Vianello, Y. Yagi, H. Koguchi, S. Kiyama, H. Sadadita, and Y. Hirano, Plasma Phys. Controlled Fusion 49, 129 (2007).
http://dx.doi.org/10.1088/0741-3335/49/2/004
197.
197. M. Agostini, R. Cavazzana, P. Scarin, G. Serianni, Y. Yagi, H. Koguchi, S. Kiyama, H. Sakakita, and Y. Hirano, Plasma Phys. Controlled Fusion 50, 095004 (2008).
http://dx.doi.org/10.1088/0741-3335/50/9/095004
198.
198. A. Fasoli, B. Labit, M. McGrath, S. H. Müller, G. Plyushchev, M. Podestà, and F. M. Poli, Phys. Plasmas 13, 055902 (2006).
http://dx.doi.org/10.1063/1.2178773
199.
199. S. H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, G. Plyushchev, M. Podestà, and F. M. Poli, Phys. Plasmas 13, 100701 (2006).
http://dx.doi.org/10.1063/1.2351960
200.
200. B. Labit, A. Diallo, A. Fasoli, I. Furno, D. Iraji, S. H. Müller, G. Plyushchev, M. Podestà, F. M. Poli, P. Ricci, C. Theiler, and J. Horaèek, Plasma Phys. Controlled Fusion 49, B281 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S26
201.
201. B. Labit, I. Furno, A. Fasoli, A. Diallo, S. H. Müller, G. Plyushchev, M. Podestà, and F. M. Poli, Phys. Rev. Lett. 98, 255002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.255002
202.
202. S. H. Müller, A. Diallo, A. Fasoli, I. Furno, B. Labit, and M. Podestà, Phys. Plasmas 14, 110704 (2007).
http://dx.doi.org/10.1063/1.2813193
203.
203. A. Diallo, A. Fasoli, I. Furno, B. Labit, M. Podestà, and C. Theiler, Phys. Rev. Lett. 101, 115005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.115005
204.
204. I. Furno, B. Labit, A. Fasoli, F. M. Poli, P. Ricci, C. Theiler, S. Brunner, A. Diallo, J. P. Graves, M. Podestà, and S. H. Müller, Phys. Plasmas 15, 055903 (2008).
http://dx.doi.org/10.1063/1.2870082
205.
205. M. Podestà, A. Fasoli, B. Labit, I. Furno, P. Ricci, F. M. Poli, A. Diallo, S. H. Müller, and C. Theiler, Phys. Rev. Lett. 101, 045001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.045001
206.
206. C. Theiler, A. Diallo, A. Fasoli, I. Furno, B. Labit, M. Podestà, F. M. Poli, and P. Ricci, Phys. Plasmas 15, 042303 (2008).
http://dx.doi.org/10.1063/1.2901188
207.
207. S. H. Müller, C. Theiler, A. Fasoli, I. Furno, B. Labit, G. R. Tynan, M. Xu, Z. Yan, and J. H. Yu, Plasma Phys. Controlled Fusion 51, 055020 (2009).
http://dx.doi.org/10.1088/0741-3335/51/5/055020
208.
208. C. Theiler, I. Furno, P. Ricci, A. Fasoli, B. Labit, S. H. Müller, and G. Plyushchev, Phys. Rev. Lett. 103, 065001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.065001
209.
209. A. Fasoli, A. Burckel, L. Federspiel, I. Furno, K. Gustafson, D. Iraji, B. Labit, J. Loizu, G. Plyushchev, P. Ricci, C. Theiler, A. Diallo, S. H. Mueller, M. Podestà, and F. Poli, Plasma Phys. Controlled Fusion 52, 124020 (2010).
http://dx.doi.org/10.1088/0741-3335/52/12/124020
210.
210. C. Riccardi and Å. Fredriksen, Phys. Plasmas 8, 199 (2001).
http://dx.doi.org/10.1063/1.1322561
211.
211. Å. Fredriksen, C. Riccardi, L. Cartegni, and H. Pecseli, Plasma Phys. Controlled Fusion 45, 721 (2003).
http://dx.doi.org/10.1088/0741-3335/45/5/314
212.
212. F. J. Oynes, O.-M. Olsen, H. L. Pécseli, Å. Fredriksen, and K. Rypdal, Phys. Rev. E 57, 2242 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.2242
213.
213. O. Grulke, F. Greine, T. Klinger, and A. Piel, Plasma Phys. Controlled Fusion 43, 525 (2001).
http://dx.doi.org/10.1088/0741-3335/43/4/310
214.
214. O. Grulke and T. Klinger, New J. Phys. 4, 67 (2002).
http://dx.doi.org/10.1088/1367-2630/4/1/367
215.
215. R. Barni and C. Riccardi, Plasma Phys. Controlled Fusion 51, 085010 (2009).
http://dx.doi.org/10.1088/0741-3335/51/8/085010
216.
216. T. A. Carter and J. E. Maggs, Phys. Plasmas 16, 012304 (2009).
http://dx.doi.org/10.1063/1.3059410
217.
217. D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Phys. Plasmas 15, 122304 (2008).
http://dx.doi.org/10.1063/1.3023155
218.
218. F. Brochard, T. Windisch, O. Grulke, and T. Klinger, Phys. Plasmas 13, 122305 (2006).
http://dx.doi.org/10.1063/1.2402131
219.
219. T. Windisch, O. Grulke, and T. Klinger, Phys. Plasmas 13, 122303 (2006).
http://dx.doi.org/10.1063/1.2400845
220.
220. G. N. Kervalishvili, R. Kleiber, R. Schneider, B. D. Scott, O. Grulke, and T. Windisch, Contrib. Plasma Phys. 48, 32 (2008).
http://dx.doi.org/10.1002/ctpp.v48:1/3
221.
221. T. Windisch, O. Grulke, and T. Klinger, J. Nucl. Mater. 390-391, 395 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.093
222.
222. G. Y. Antar, J. H. Yu, and G. Tynan, Phys. Plasmas 14, 022301 (2007).
http://dx.doi.org/10.1063/1.2424886
223.
223. G. Y. Antar, Phys. Plasmas 10, 3629 (2003).
http://dx.doi.org/10.1063/1.1599855
224.
224. T. Pierre, A. Escarguel, D. Guyomarc’h, R. Barni, and C. Ricardi, Phys. Rev. Lett. 92, 065004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.065004
225.
225. R. Barni, C. Riccardi, T. Pierre, G. Leclert, A. Escarguel, D. Guyomarc’h, and K. Quotb, New J. Phys. 7, 225 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/225
226.
226. S. Magni, H. E. Roman, R. Barni, C. Riccardi, T. Pierre, and D. Guyomarc’h, Phys. Rev. E 72, 026403 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.026403
227.
227. H. Tanaka, N. Ohno, Y. Tsuji, and S. Kajita, Controlled Plasma Phys. 50, 256 (2010).
http://dx.doi.org/10.1002/ctpp.201010043
228.
228. T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai, A. Fujisawa, and K. Itoh, Nat. Phys. 4, 721 (2008).
http://dx.doi.org/10.1038/nphys1029
229.
229. A. H. Nielsen, H. L. Pecseli, and J. J. Rasmussen, Phys. Plasmas 3, 1530 (1996).
http://dx.doi.org/10.1063/1.872008
230.
230. B. LaBombard, Phys. Plasmas 9, 1300 (2002).
http://dx.doi.org/10.1063/1.1459060
231.
231. A. Huber, U. Samm, B. Schweer, and Ph. Mertens, Plasma Phys. Controlled Fusion 47, 409 (2005).
http://dx.doi.org/10.1088/0741-3335/47/3/002
232.
232. B. Kurzan, L. D. Horton, H. Murmann, J. Neuhauser, W. Suttrop, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 49, 825 (2007).
http://dx.doi.org/10.1088/0741-3335/49/6/010
233.
233. Y. Hamada, T. Watari, A. Nishizawa, K. Narihara, Y. Kawasumi, T. Ido, M. Kojima, and K. Toi (JIPPT-IIU Group), Phys. Rev. Lett. 96, 115003 (2006).
234.
234. T. Peacock and J. Dabin, Chaos 20, 017501 (2010).
http://dx.doi.org/10.1063/1.3278173
235.
235. V. Antoni, V. Carbone, E. Martines, G. Regnoli, G. Serianni, N. Vianello, and P. Veltri, Europhys. Lett. 54, 51 (2001).
http://dx.doi.org/10.1209/epl/i2001-00227-1
236.
236. S. J. Zweben, J. L. Terry, B. LaBombard, M. Agostini, M. Greenwald, O. Grulke, J. W. Hughes, D. A. D’Ippolito, S. I. Krasheninnikov, J. R. Myra, D. A. Russell, D. P. Stotler, and M. Umansky, “Estimate of convective radial transport due to SOL turbulence as measured by GPI in Alcator C-Mod,” J. Nucl. Mater. (in press, 2010).
237.
237. E. Spada, V. Carbone, R. Cavazzana, L. Fattorini, G. Regnoli, N. Vianello, V. Antoni, E. Martines, G. Serianni, M. Spolaore, and L. Tramontin, Phys. Rev. Lett. 86, 3032 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3032
238.
238. V. P. Budaev, S. Takamura, N. Ohno, and S. Masuzaki, Nucl. Fusion 46, S181 (2006).
http://dx.doi.org/10.1088/0029-5515/46/4/S10
239.
239. V. P. Budaev, N. Ohno, S. Masuzaki, T. Morisaki, A. Komori, and S. Takamura, Nucl. Fusion 48, 024014 (2008).
http://dx.doi.org/10.1088/0029-5515/48/2/024014
240.
240. N. Mahdizadeh, F. Greiner, T. Happel, A. Kendl, M. Ramisch, B. D. Scott, and U. Stroth, Plasma Phys. Cont. Fusion 49, 1005 (2007).
http://dx.doi.org/10.1088/0741-3335/49/7/005
241.
241. P. Piovesan, A. Almagri, B. E. Chapman, D. Craig, L. Marrelli, P. Martin, S. C. Prager, and J. S. Sarff, Nucl. Fusion 48, 095003 (2008).
http://dx.doi.org/10.1088/0029-5515/48/9/095003
242.
242. I. Nanobashvili, P. Devynck, J. P. Gunn, S. Nanobashvili, J. Stöckel, and G. Van Oost, Phys. Plasmas 16, 022309 (2009).
http://dx.doi.org/10.1063/1.3074787
243.
243. G. Y. Antar, G. Counsell, Y. Yu, B. Labombard, and P. Devynck, Phys. Plasmas 10, 419 (2003).
http://dx.doi.org/10.1063/1.1536166
244.
244. F. Sattin, M. Agostini, P. Scarin, N. Vianello, R. Cavazzana, L. Marrelli, G. Serianni, S. J. Zweben, R. J. Maqueda, Y. Yagi, H. Sakakita, H. Koguchi, S. Kiyama, Y. Hirano, and J. L. Terry, Plasma Phys. Controlled Fusion 51, 055013 (2009).
http://dx.doi.org/10.1088/0741-3335/51/5/055013
245.
245. B. A. Carreras, B. van Milligen, M. A. Pedrosa, R. Balbýn, C. Hidalgo, D. E. Newman, E. Sánchez, M. Frances, I. Garcýa-Cortés, J. Bleuel, M. Endler, S. Davies, and G. F. Matthews, Phys. Rev. Lett. 80, 4438 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4438
246.
246. G. Serianni, M. Agostini, V. Antoni, R. Cavazzana, E. Martines, F. Sattin, P. Scarin, E. Spada, M. Spolaore, N. Vianello, and M. Zuin, Plasma Phys. Controlled Fusion 49, B267 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S25
247.
247. K. Bodi, S. I. Krasheninnikov, and A. I. Smolyakov, Phys. Plasmas 15, 102304 (2008).
http://dx.doi.org/10.1063/1.2993211
248.
248. J. A. Boedo, R. J. Maqueda, D. L. Rudakov, G. R. McKee, H. Kugel, R. Maingi, N. Crocker, R. A. Moyer, V. A. Soukhanovskii, J. Menard, J. G. Watkins, S. J. Zweben, D. A. D’Ippolito, T. E. Evans, M. E. Fenstermacher, M. Groth, E. M. Hollmann, C. J. Lasnier, J. R. Myra, L. A. Roquemore, W. P. West, and L. Zeng, in Plasma Physics and Controlled Nuclear Fusion Research 2006 (IAEA, Vienna, 2007), paper IAEA-CN-149- EX/P4-2.
249.
249. C. Hidalgo, B. Gonçalves, M. A. Pedrosa, J. Castellano, K. Erents, A. L. Fraguas, M. Hron, J. A. Jiménez, G. F. Matthews, B. van Milligen, and C. Silva, Plasma Phys. Controlled Fusion 44, 1557 (2002).
http://dx.doi.org/10.1088/0741-3335/44/8/309
250.
250. B. A. Carreras, C. Hidalgo, E. Sanchez, M. A. Pedrosa, R. Balbýn, I. Garcýa-Cortes, B. van Milligen, D. E. Newman and V. E. Lynch, Phys. Plasmas 3, 2664 (1996).
http://dx.doi.org/10.1063/1.871523
251.
251. V. Naulin, O. E. Garcia, A. H. Nielsen, and J. Juul Rasmussen, Phys. Letters A 321, 355 (2004).
http://dx.doi.org/10.1016/j.physleta.2003.12.019
252.
252. F. Sattin, M. Agostini, R. Cavazzana, G. Serianni, P. Scarin, and N. Vianello, Phys. Scr. 79, 045006 (2009).
http://dx.doi.org/10.1088/0031-8949/79/04/045006
253.
253. E. Kim and J. Anderson, Phys. Plasmas 15, 114506 (2008).
http://dx.doi.org/10.1063/1.3033751
254.
254. D. Farina, R. Pozzoli, and D. D. Ryutov, Nucl. Fusion 33, 1315 (1993).
http://dx.doi.org/10.1088/0029-5515/33/9/I06
255.
255. J. W. Connor, Plasma Phys. Controlled Fusion 40, 191 (1998).
http://dx.doi.org/10.1088/0741-3335/40/2/003
256.
256. K. Kamiya, N. Asakura, J. Boedo, T. Eich, G. Federici, M. Fenstermacher, K. Finken, A. Herrmann, J. Terry, A. Kirk, B. Koch, A. Loarte, R. Maingi, R. Maqueda, E. Nardon, N. Oyama and R. Sartori, Plasma Phys. Controlled Fusion 49, S43 (2007).
http://dx.doi.org/10.1088/0741-3335/49/7/S03
257.
257. W. Fundamenski, V. Naulin, T. Neukirch, O. E. Garcia, and J. Juul Rasmussen, Plasma Phys. Controlled Fusion 49, R43 (2007).
http://dx.doi.org/10.1088/0741-3335/49/5/R01
258.
258. A. Schmid, A. Herrmann, H. W. Müller, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 50, 045007 (2008).
http://dx.doi.org/10.1088/0741-3335/50/4/045007
259.
259. V. Rozhansky and A. Kirk, Plasma Phys. Controlled Fusion 50, 025008 (2008).
http://dx.doi.org/10.1088/0741-3335/50/2/025008
260.
260. B. N. Rogers and J. F. Drake, Phys. Rev. Lett. 79, 229 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.229
261.
261. B. Scott, Plasma Phys. Controlled Fusion 39, 1635 (1997).
http://dx.doi.org/10.1088/0741-3335/39/10/010
262.
262. B. N. Rogers, J. F. Drake, and A. Zeiler, Phys. Rev. Lett. 81, 4396 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4396
263.
263. X. Q. Xu, W. M. Nevins, T. D. Rognlien, R. H. Bulmer, M. Greenwald, A. Mahdavi, L. D. Pearlstein, and P. Snyder, Phys. Plasmas 10, 1773 (2003).
http://dx.doi.org/10.1063/1.1566032
264.
264. B. Lipschultz, D. Whyte, and B. LaBombard, Plasma Phys. Controlled Fusion 47, 1559 (2005).
http://dx.doi.org/10.1088/0741-3335/47/10/001
265.
265. B. LaBombard, M. V. Umansky, R. L. Boivin, J. A. Goetz, J. Hughes, B. Lipschultz, D. Mossessian, C. S. Pitcher, J. L. Terry, and Alcator Group, Nucl. Fusion 40, 2041 (2000).
http://dx.doi.org/10.1088/0029-5515/40/12/308
266.
266. D. A. Baver, J. R. Myra, and M. V. Umansky, “Linear eigenvalue code for edge plasma in full tokamak X-point geometry,” Comp. Physics Comm. 182, 1610 (2011).
267.
267. J. Terry, private communication (2010).
268.
268. H. Berk, D. D. Ryutov, and Y. A. Tsidulko, JETP Lett. 52, 23 (1990).
269.
269. H. L. Berk, D. D. Ryutov, and Y. A. Tsidulko, Phys. Fluids B 3, 1346 (1991).
http://dx.doi.org/10.1063/1.859699
270.
270. H. L. Berk, R. H. Cohen, D. D. Ryutov, Y. A. Tsidulko, and X. Q. Xu, Nucl. Fusion 33, 263 (1993).
http://dx.doi.org/10.1088/0029-5515/33/2/I07
271.
271. X. S. Lee, P. J. Catto, and R. E. Aamodt, Phys. Fluids 25, 1491 (1982).
http://dx.doi.org/10.1063/1.863933
272.
272. J. Horacek, J. Adamek, H.W. Müller, J. Seidl, A.H. Nielsen, V. Rohde, F. Mehlmann, C. Ionita, E. Havlíčková, and the ASDEX Upgrade Team, Nucl. Fusion 50, 105001 (2010).
http://dx.doi.org/10.1088/0029-5515/50/10/105001
273.
273. J. A. Boedo, D. L. Rudakov, E. Hollmann, D. S. Gray, K. H. Burrell, R. A. Moyer, G. R. McKee, R. Fonck, P. C. Stangeby, T. E. Evans, P. B. Snyder, A. W. Leonard, M. A. Mahdavi, M. J. Schaffer, M. E. F. W. P. West, M. Groth, S. L. Allen, C. Lasnier, G. D. Porter, N. S. Wolf, R. J. Colchin, L. Zeng, G. Wang, J. G. Watkins, and T. Takahashi, Phys. Plasmas 12, 072516 (2005).
http://dx.doi.org/10.1063/1.1949224
274.
274. G. R. Tynan, C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, and N. Taheri, Plasma Phys. Controlled Fusion 48, S51 (2006).
http://dx.doi.org/10.1088/0741-3335/48/4/S05
275.
275. P. B. Snyder, H. R. Wilson, and X. Q. Xu, Phys. Plasmas 12, 056115 (2005).
http://dx.doi.org/10.1063/1.1873792
276.
276. P. Ricci and B. N. Rogers, Phys. Rev. Lett. 104, 145001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.145001
277.
277. T. Yamada, S.-I. Itoh, S. Inagaki, Y. Nagashima, N. Kasuya, K. Kamataki, H. Arakawa, T. Kobayashi, M. Yagi, A. Fujisawa, and K. Itoh, Phys. Rev. Lett. 105, 225002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.225002
278.
278. S. J. Zweben, R. J. Maqueda, R. Hager, K. Hallatschek, S. M. Kaye, T. Munsat, F. M. Poli, A. L. Roquemore, Y. Sechrest, and D. P. Stotler, Phys. Plasmas 17, 102502 (2010).
http://dx.doi.org/10.1063/1.3476276.1
279.
279. T. Ribeiro and B. D. Scott, Plasma Phys. Controlled Fusion, 47, 1657 (2005).
http://dx.doi.org/10.1088/0741-3335/47/10/005
280.
280. R. Sanchez, B. Ph.van. Milligen, D. E. Newman, and B. A. Carreras, Phys. Rev. Lett. 90, 185005 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.185005
281.
281. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).
http://dx.doi.org/10.1088/0741-3335/47/5/R01
282.
282. P. Ricci, B. N. Rogers, and S. Brunner, Phys. Rev. Lett. 100, 225002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.225002
283.
283. I. Cziegler, J. L. Terry, J. W. Hughes, and B. LaBombard, Phys. Plasmas 17, 056120 (2010).
http://dx.doi.org/10.1063/1.3421577
284.
284. Z. Yan, M. Xu, P. H. Diamond, C. Holland, S. H. Müller, G. R. Tynan, and J. H. Yu, Phys. Rev. Lett. 104, 065002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.065002
285.
285. Z. Yan, J. H. Yu, C. Holland, M. Xu, S. H. Müller, and G. R. Tynan, Phys. Plasmas 15, 092309 (2008).
http://dx.doi.org/10.1063/1.2985836
286.
286. F. Mehlmann, C. Ionita, V. Naulin, J. J. Rasmussen, H. W. Müller, N. Vianello, C. Maszl, V. Rohde, M. Zuin, R. Cavazzana, M. Maraschek, and R. Schrittwieser, in Proceedings of the 37th EPS Conference on Plasma Physics, (EPS, Dublin, 2010), paper P1-1064.
287.
287. P. B. Parks and L. R. Baylor, Phys. Rev. Lett. 94, 125002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.125002
288.
288. B. Gonçalves, C. Hidalgo, M. A. Pedrosa, R. O. Orozco, E. Sánchez, and C. Silva, Phys. Rev. Lett. 96, 145001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.145001
289.
289. C. Hidalgo, B. Gonçalves, C. Silva, M. A. Pedrosa, K. Erents, M. Hron, and G. F. Matthews, Phys. Rev. Lett. 91, 065001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.065001
290.
290. J. P. Gunn, C. Boucher, M. Dionne, I. Ïuran, V. Fuchs, T. Loarer, I. Nanobashvili, R. Pánek, J.-Y. Pascal, F. Saint-Laurent, J. Stöckel, T. V. Rompuy, R. Zagórski, J. Adámek, J. Bucalossi, R. Dejarnac, P. Devynck, P. Hertout, M. Hron, G. Lebrun, P. Moreau, F. Rimini, A. Sarkissian, and G. Van Oost, J. Nucl. Mater. 363-365, 484 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.195
291.
291. B. LaBombard, B. LaBombard, J. E. Rice, A. E. Hubbard, J. W. Hughes, M. Greenwald, J. Irby, Y. Lin, B. Lipschultz, E. S. Marmar, C. S. Pitchera, N. Smick, S. M. Wolfe, S. J. Wukitch, and the Alcator Group, Nucl. Fusion 44, 1047 (2004).
http://dx.doi.org/10.1088/0029-5515/44/10/001
292.
292. N. Fedorczak, J. P. Gunn, G. Bonhomme, F. Brochard, H. Bufferand, G. Ciraolo, M. Farge, P. Ghendrih, J. P. Gunn, P. Hennequin, L. Isoardi, R. Nguyen, C. Reux, F. Schwander, P. Tamain, and L. Vermare, “Experimental investigation on the poloidal extent of the turbulent radial flux in tokamak scrape-off layer,” J. Nucl. Mater. (in press).
293.
293. W. Fundamenski and W. Sailer, Plasma Phys. Controlled Fusion 46, 233 (2004).
http://dx.doi.org/10.1088/0741-3335/46/1/015
294.
294. J. H. Yu, J. A. Boedo, E. M. Hollmann, R. A. Moyer, D. L. Rudakov, and P. B. Snyder, Phys. Plasmas 15, 032504 (2008).
http://dx.doi.org/10.1063/1.2898404
295.
295. G. Chiavassa, H. Bufferand, G. Ciraolo, P. Ghendrih, H. Guillard, L. Isoardi, A. Paredes, F. Schwander, E. Serre, and P. Tamain, “Parallel expansion of density bursts, J. Nucl. Mater. (in press).
296.
296. E. Havlíčková, W. Fundamenski, V. Naulin, A. H. Nielsen, J. Seidl, and J. Horáček, “The effect of plasma fluctuations on parallel transport parameters in the SOL,” J. Nucl. Mater. (in press).
297.
297. V. Rozhansky, I. Veselova, and S. Voskoboynikov, Plasma Phys. Controlled Fusion 37, 399 (1995).
http://dx.doi.org/10.1088/0741-3335/37/4/003
298.
298. N. Vianello, M. Spolaore, E. Martines, R. Cavazzana, G. Serianni, M. Zuin, E. Spada, and V. Antoni, Nucl. Fusion 50, 042002 (2010).
http://dx.doi.org/10.1088/0029-5515/50/4/042002
299.
299. N. Mizuguchi, R. Khan, T. Hayachi, and N. Nakajima, Nucl. Fusion 47, 579 (2007).
http://dx.doi.org/10.1088/0029-5515/47/7/009
300.
300. R. Khan, N. Mizuguchi, N. Nakajima, and T. Hayachi, Phys. Plasmas 14, 062302 (2007).
http://dx.doi.org/10.1063/1.2744362
301.
301. C. R. Sovinec, D. D. Schnack, A. Y. Pankin, D. P. Brennan, H. Tian, D. C. Barnes, S. E. Kruger, E. D. Held, C. C. Kim, X. S. Li, D. K. Kaushik, S. C. Jardin, and the NIMROD team, J. Phys.: Conf. Ser. 16, 25 (2005).
http://dx.doi.org/10.1088/1742-6596/16/1/003
302.
302. H. R. Strauss, L. Sugiyama, C. S. Chang, G. Y. Park, S. Ku, W. Park, J. Breslau, and S. Jardin, in Proceedings of the 21st IAEA Fusion Energy Conference, 1620 October 2006, Chengdu (IAEA, Vienna, 2006), paper IAEA-CN-116/TH/P8-6.
303.
303. L. E. Sugiyama and H. R. Strauss, Phys. Plasmas 17, 062505 (2010).
http://dx.doi.org/10.1063/1.3449301
304.
304. H. Takahashi, E. D. Fredrickson, and M. J. Schaffer, Phys. Rev. Lett. 100, 205001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.205001
305.
305. A. Kirk, H. R. Wilson, R. Akers, N. J. Conway, G. F. Counsell, S. C. Cowley, J. Dowling, B. Dudson, A. Field, F. Lott, B. Lloyd, R. Martin, H. Meyer, M. Price, D. Taylor, M. Walsh, and the MAST team, Plasma Phys. Controlled Fusion 47, 315 (2005).
http://dx.doi.org/10.1088/0741-3335/47/2/008
306.
306. B. Kurzan, H. D. Murmann, and J. Neuhauser, Phys. Rev. Lett. 95, 145001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.145001
307.
307. R. Scannell, A. Kirk, N. B. Ayed, P. G. Carolan, G. Cunningham, J. McCone, S. L. Prunty, and M. J. Walsh, Plasma Phys. Controlled Fusion 49, 1431 (2007).
http://dx.doi.org/10.1088/0741-3335/49/9/006
308.
308. A. Kirk, B. Koch, R. Scannell, H. R. Wilson, G. Counsell, J. Dowling, A. Herrmann, R. Martin, and M. Walsh (the MAST team), Phys. Rev. Lett. 96, 185001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.185001
309.
309. H. R. Wilson and S. C. Cowley, Phys. Rev. Lett. 92, 175006 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175006
310.
310. G. Y. Antar, S. I. Krasheninnikov, P. B. Snyder, R. A. Moyer, R. Pugno, and D. S. Gray, Nucl. Fusion 49, 032001 (2009).
http://dx.doi.org/10.1088/0029-5515/49/3/032001
311.
311. S. J. Zweben, B. D. Scott, J. L. Terry, B. LaBombard, J. W. Hughes, and D. P. Stotler, Phys. Plasmas 16, 082505 (2009).
http://dx.doi.org/10.1063/1.3191721
312.
312. T. Munsat and S. J. Zweben, Rev. Sci. Instrum. 77, 103501 (2006).
http://dx.doi.org/10.1063/1.2356851
313.
313. A. Yu. Pigarov, S. I. Krasheninnikov, and T. D. Rognlien, “New approach in multi-fluid modeling of edge plasma transport with high intermittency due to blobs and ELMs,” Bull. Am. Phys. Soc. 55, 280 (2010), paper PP9-145.
314.
314. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, (Institute of Physics Publishing, Philadelphia, PA, 2000).
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/6/10.1063/1.3594609
Loading
/content/aip/journal/pop/18/6/10.1063/1.3594609
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/6/10.1063/1.3594609
2011-06-24
2014-11-22

Abstract

A blob-filament (or simply “blob”) is a magnetic-field-aligned plasma structure which is considerably denser than the surrounding background plasma and highly localized in the directions perpendicular to the equilibrium magnetic field B. In experiments and simulations, these intermittent filaments are often formed near the boundary between open and closed field lines, and seem to arise in theory from the saturation process for the dominant edge instabilities and turbulence.Blobs become charge-polarized under the action of an external force which causes unequal drifts on ions and electrons; the resulting polarization-induced E × B drift moves the blobs radially outwards across the scrape-off-layer (SOL). Since confined plasmas generally are subject to radial or outwards expansion forces (e.g., curvature and B forces in toroidalplasmas),blobtransport is a general phenomenon occurring in nearly all plasmas. This paper reviews the relationship between the experimental and theoretical results on blob formation, dynamics and transport and assesses the degree to which blob theory and simulations can be compared and validated against experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/6/1.3594609.html;jsessionid=otmddzkvuid6.x-aip-live-02?itemId=/content/aip/journal/pop/18/6/10.1063/1.3594609&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Convective transport by intermittent blob-filaments: Comparison of theory and experiment
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/6/10.1063/1.3594609
10.1063/1.3594609
SEARCH_EXPAND_ITEM