1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Review of field-reversed configurations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/7/10.1063/1.3613680
1.
1. E. R. Coleman, S. A. Cohen, and M. S. Mahoney, J. Fusion Energy 30, 238 (2011).
http://dx.doi.org/10.1007/s10894-011-9392-5
2.
2. J. K. Wright and N. J. Phillips, J. Nucl. Energy, Part C 1, 240 (1960).
http://dx.doi.org/10.1088/0368-3281/1/4/108
3.
3. T. S. Green, Phys. Rev. Lett. 5, 297 (1960).
http://dx.doi.org/10.1103/PhysRevLett.5.297
4.
4. J. M. Finn and R. N. Sudan, Nucl. Fusion 22, 1443 (1982).
http://dx.doi.org/10.1088/0029-5515/22/11/004
5.
5. M. Tuszewski, Nucl. Fusion 28, 2033 (1988).
http://dx.doi.org/10.1088/0029-5515/28/11/008
6.
6. L. C. Steinhauer, Fusion Technol. 30, 116 (1996).
7.
7. H. Momota, A. Ishida, Y. Kohzaki, G. H. Miley, S. Ohi, M. Ohnishi, K. Sato, L. C. Steinhauer, Y. Tomita, and M. Tuszewski, Fusion Technol. 21, 2307 (1992).
8.
8. N. Rostoker, M. Binderbauer, and R. Skinner, AIP Conf. Proc. 311, 168 (1994).
http://dx.doi.org/10.1063/1.46557
9.
9.The traditional concept of an FRC has no toroidal field, and thus no unique magnetic surfaces in the usual sense. In this case, magnetic surfaces are simply defined as the family ψ(r,z) = const (cylindrical coordinates).
10.
10.The “S” parameter is defined as SR0i0, where ρi0 ≡ (mikTi)1/2/eBe is the ion Larmor radius based on the external magnetic field. For typical elongated FRCs with Ti ∼ 2Te, S ∼ 1.3S*. The “ ” parameter is defined as , where the integral is over the minor radius (R0 to Rs). It differs from S in that it uses an integrated average of the local gyroradius. For typical profiles, . The advantage of the S* over these alternate definitions is that it can be inferred directly from measurements without any guesswork about the ion temperature.
11.
11. A. Eberhagen and W. Grossmann, Z. Physik 248, 130 (1971).
http://dx.doi.org/10.1007/BF01395349
12.
12. A. G. Es’kov, R. Kh. Kurtmullaev, A. P. Kreshchuk, Ya. N. Laukhin, A. I. Malyutin, A. I. Markin, Yu. S. Martyushov, B. N. Mironov, M. M. Orlov, A. P. Proshletsov, V. N. Semenov, and Yu. B. Sosunov, in Proceedings of the 7th International Conference Innsbruck, 1978, Vol. 2 (International Atomic Energy Association, Vienna, 1979), p. 187.
13.
13. M. Brettschneider, J. Killeen, and A. A. Mirin, J. Comput. Phys. 11, 360 (1973).
http://dx.doi.org/10.1016/0021-9991(73)90079-X
14.
14. D. E. Baldwin and M. E. Rensink, Comments on Plasma Phys. Controlled Fusion 4, 55 (1978).
15.
15. J. H. Hammer and H. L. Berk, Nucl. Fusion 22, 89 (1982).
http://dx.doi.org/10.1088/0029-5515/22/1/009
16.
16. M. W. Binderbauer, H. Y. Guo, M. Tuszewski et al., Phys. Rev. Lett. 105, 045003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.045003
17.
17. H. Y. Guo, M. W. Binderbauer, D. Barnes, S. Putvinski, N. Rostoker, L. Sevier, M. Tuszewski, M. G. Anderson, R. Andow, L. Bonelli, F. Brandi, R. Brown, D. Q. Bui, V. Bystritskii, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, E. Garate, F. Giammanco, F. J. Glass, O. Gornostaeva, H. Gota, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, I. Isakov, V. A. Jose, X. L. Li, Y. Luo, P. Marsili, R. Mendoza, M. Meekins, Y. Mok, A. Necas, E. Paganini, F. Pegoraro, R. Pousa-Hijos, S. Primavera, E. Ruskov, A. Qerushi, L. Schmitz, J. H. Schroeder, A. Sibley, A. Smirnov, Y. Song, L. C. Steinhauer, X. Sun, M. C. Thompson, A. D. Van Drie, J. K. Walters, M. D. Wyman, and TAE Team, Phys. Plasmas 18, 056110 (2011).
http://dx.doi.org/10.1063/1.3574380
18.
18. M. Yamada, Y. Ono, A. Hayakawa, and M. Katsurai, Phys. Rev. Lett. 65, 721 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.721
19.
19. Y. Ono, A. Morita, M. Katsurai, and M. Yamada, Phys. Fluids B 5, 3691 (1993).
http://dx.doi.org/10.1063/1.860840
20.
20. S. Shimamura and Y. Nogi, Fusion Technol. 9, 69 (1986).
21.
21. S. Kumashiro, T. Takahashi, M. Ooi, Ts. Takahashi, S. Shimamura, and Y. Nogi, J. Phys. Soc. Jpn. 62, 1539 (1993).
http://dx.doi.org/10.1143/JPSJ.62.1539
22.
22. A. Shiokawa and S. Goto, Phys. Fluids B 5, 534 (1993).
http://dx.doi.org/10.1063/1.860538
23.
23. M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997).
http://dx.doi.org/10.1063/1.872336
24.
24. A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002).
25.
25. H. Y. Guo, A. L. Hoffman, R. D. Brooks, A. M. Peter, Z. A. Pietrzyk, S. J. Tobin, and G. R. Votroubek, Phys. Plasmas 9, 185 (2002).
http://dx.doi.org/10.1063/1.1426102
26.
26. C. D. Cothran, A. Falk, A. Fefferman, M. Landreman, M. R. Brown, and M. J. Schaffer, Phys. Plasmas 10, 1748 (2003).
http://dx.doi.org/10.1063/1.1564084
27.
27. T. Intrator, S. Y. Zhang, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, and G. A. Wurden, Phys. Plasmas 11, 2580 (2004).
http://dx.doi.org/10.1063/1.1689666
28.
28. E. Kawamori and Y. Ono, Phys. Rev. Lett. 95, 085003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.085003
29.
29. E. Kawamori, Y. Murata, K. Umeda, D. Hirota, T. Ogawa, T. Sumikawa, T. Iwama, K. Ishii, T. Kado, T. Itagaki, M. Katsurai, A. Balandin, and Y. Ono, Nucl. Fusion 45, 843 (2005).
http://dx.doi.org/10.1088/0029-5515/45/8/010
30.
30. H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007).
http://dx.doi.org/10.1063/1.2801481
31.
31. K. E. Miller, J. A. Grossnickle, R. D. Brooks, C. L. Deards, T. E. DeHart, M. Dellinger, M. B. Fishburn, H. Y. Guo, B. Hansen, J. W. Hayward, A. L. Hoffman, W. S. Kimball, K. Y. Lee, D. E. Lotz, P. A. Melnik, R. D. Milroy, Z. A. Pietrzyk, and G. C. Vlases, Fusion Sci. Technol. 54, 946 (2008).
32.
32. S. A. Cohen, B. Berlinger, C. Brunkhorst, A. Brooks, N. Ferraro, D. P. Lundberg, A. Roach, and A. H. Glasser, Phys. Rev. Lett. 98, 145002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.145002
33.
33. J. Slough, S. Andreason, H. Gota, C. Pihl, and G. Votroubek, J. Fusion Energy 26, 199 (2007).
http://dx.doi.org/10.1007/s10894-006-9058-x
34.
34. G. Votroubek and J. Slough, J. Fusion Energy 29, 571 (2010).
http://dx.doi.org/10.1007/s10894-010-9335-6
35.
35. G. Votroubek, J. Slough, S. Andreason, and C. Pihl, J. Fusion Energy 27, 123 (2008).
http://dx.doi.org/10.1007/s10894-007-9103-4
36.
36. T. Munsat, C. L. Ellison, A. Light, J. Nuger, W. Willcockson, and S. Wurzel, J. Fusion Energy 27, 82 (2008).
http://dx.doi.org/10.1007/s10894-007-9108-z
37.
37. W. S. Harris, E. Trask, T. Roche, E. P. Garate, W. W. Heidbrink, and R. McWilliams, Phys. Plasmas 16, 112509 (2009).
http://dx.doi.org/10.1063/1.3265961
38.
38.This average-β estimate is based on a rigid-rotor equilibrium (Re Sec. II) and a typical Xs = 0.4 – 0.5.
39.
39.The relative flux estimate is based on a truncated rigid-rotor equilibrium and a typical Xs = 0.4 – 0.5.
40.
40. J. W. Cobb, T. Tajima, and D. C. Barnes, Phys. Fluids B 5, 3227 (1993).
http://dx.doi.org/10.1063/1.860658
41.
41. R. Kanno, A. Ishida, and L. C. Steinhauer, J. Phys. Soc. Jpn 64, 463 (1995).
http://dx.doi.org/10.1143/JPSJ.64.463
42.
42. E. V. Belova, S. C. Jardin, H. Ji, M. Yamada, and R. Kulsrud, Phys. Plasmas 7, 4996 (2000).
http://dx.doi.org/10.1063/1.1318929
43.
43. E. V. Belova, S. C. Jardin, H. Ji, M. Yamada, and R. Kulsrud, Phys. Plasmas, 8, 1267 (2001).
http://dx.doi.org/10.1063/1.1355027
44.
44. E. V. Belova, R. C. Davidson, H. Ji, and M. Yamada, Phys. Plasmas 10, 2361 (2003).
http://dx.doi.org/10.1063/1.1568118
45.
45. E. V. Belova, R. C. Davidson, H. Ji, and M. Yamada, Phys. Plasmas 11, 2523 (2004).
http://dx.doi.org/10.1063/1.1666293
46.
46. M. Urano, Y. Ohkuma, Ts. Takahashi, K. Suzuki, and Y. Nogi, J. Phys. Soc. Jpn 64, 4077 (1995).
http://dx.doi.org/10.1143/JPSJ.64.4077
47.
47. H. Gota, K. Fujimoto, Y. Ohkuma, Ts. Takahashi, and Y. Nogi, Phys. Plasmas 10, 4763 (2003).
http://dx.doi.org/10.1063/1.1624835
48.
48. S. P. Gerhardt, E. Belova, M. Inomoto, M. Yamada, H. Ji, Y. Ren, and A. Kuritsyn, Phys. Plasmas 13, 112508 (2006).
http://dx.doi.org/10.1063/1.2360912
49.
49. Y. Ohkuma, M. Hiroi, T. Ikeyama, and Y. Nogi, Phys. Plasmas 17, 042502 (2010).
http://dx.doi.org/10.1063/1.3374033
50.
50. D. C. Barnes, Phys. Plasmas 8, 4856 (2001).
http://dx.doi.org/10.1063/1.1408289
51.
51. D. C. Barnes, Phys. Plasmas 8, 4864 (2001).
http://dx.doi.org/10.1063/1.1408290
52.
52. S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau Enterprises, New York, 1965), Vol. I, p. 205.
53.
53. L. C. Steinhauer, Phys. Fluids B 2, 2679 (1990).
http://dx.doi.org/10.1063/1.859390
54.
54. N. Iwasawa, A. Ishida, and L. C. Steinhauer, J. Phys. Soc. Jpn. 69, 451 (2000).
http://dx.doi.org/10.1143/JPSJ.69.451
55.
55. N. Iwasawa, A. Ishida, and L. C. Steinhauer, Phys. Plasmas 8, 1240 (2001).
http://dx.doi.org/10.1063/1.1354645
56.
56. R. A. Clemente and R. Farengo, Phys. Fluids 27, 776 (1984).
http://dx.doi.org/10.1063/1.864695
57.
57. L. C. Steinhauer, Phys. Plasmas 6, 2734 (1999).
http://dx.doi.org/10.1063/1.873230
58.
58. A. Ishida, L. C. Steinhauer, and Y.-K. M. Peng, Phys. Plasmas 17, 122507 (2011).
http://dx.doi.org/10.1063/1.3526600
59.
59. L. C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).
http://dx.doi.org/10.1063/1.2200610
60.
60. L. C. Steinhauer, H. Yamada, and A. Ishida, Phys. Plasmas 8, 4053 (2001).
http://dx.doi.org/10.1063/1.1388034
61.
61. H. Yamada, T. Katano, K. Kanai, A. Ishida, and L. C. Steinhauer, Phys. Plasmas 9, 4605 (2002).
http://dx.doi.org/10.1063/1.1510125
62.
62. L. C. Steinhauer and H. Y. Guo, Phys. Plasmas 16, 052514 (2006).
http://dx.doi.org/10.1063/1.2200611
63.
63. R. L. Morse and J. P. Freidberg, Phys. Fluids 13, 531 (1970).
http://dx.doi.org/10.1063/1.1692951
64.
64. R. V. Lovelace, D. A. Larrabee, and H. H. Fleischmann, Phys. Fluids 21, 863 (1978);
http://dx.doi.org/10.1063/1.862314
64. D. A. Larrabee, R. V. Lovelace, and H. H. Fleischmann, Nucl. Fusion 19, 499 (1979).
http://dx.doi.org/10.1088/0029-5515/19/4/008
65.
65. D. A. Larrabee, R. V. Lovelace, and H. H. Fleischmann, Nucl. Fusion 19, 499 (1979).
http://dx.doi.org/10.1088/0029-5515/19/4/008
66.
66. R. N. Sudan, AIP Conf. Proc. 311, 194 (1993).
http://dx.doi.org/10.1063/1.46561
67.
67. N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002).
http://dx.doi.org/10.1063/1.1475683
68.
68. N. Rostoker, F. Wessel, H. Rahman, B. C. Maglich, B. Spivey, and A. Fisher, Phys. Rev. Lett. 70, 1818 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1818
69.
69. L. Steinhauer, Bull. Am. Phys. Soc. 54, 141 (2009);
69. L. Steinhauer, Bull. Am. Phys. Soc. 55, 315 (2010).
70.
70. D. C. Barnes and R. D. Milroy, Phys. Fluid B 3, 2609 (1991).
http://dx.doi.org/10.1063/1.859973
71.
71. T. Takahashi, Y. Yamada, Y. Kondoh, M. Goto, T. Okada, Y. Hirano, T. Asai, Ts. Takahashi, and Y. Tomita, J. Plasma Phys. 72, 891 (2006).
http://dx.doi.org/10.1017/S002237780600506X
72.
72. T. Takahashi, F. P. Iizima, H. Yamaura, and Y. Kondoh, Trans. Fusion Sci. Technol. 51, 382 (2007).
73.
73. M.-Y. Hsiao and G. H. Miley, Phys. Fluids 28, 1440 (1985).
http://dx.doi.org/10.1063/1.864978
74.
74. M.-Y. Hsiao, J. L. Staudenmeier, and P.-R. Chiang, Phys. Fluids B 1, 375 (1989).
http://dx.doi.org/10.1063/1.859150
75.
75. M.-Y. Hsiao and P.-R. Chiang, Phys. Fluids B 2, 106 (1990).
http://dx.doi.org/10.1063/1.859521
76.
76. P.-R. Chiang and M.-Y. Hsiao, Phys. Fluids B 4, 3226 (1992).
http://dx.doi.org/10.1063/1.860378
77.
77. Y. Hayakawa, T. Takahashi, and Y. Kondoh, Nucl. Fusion 42, 1075 (2002).
http://dx.doi.org/10.1088/0029-5515/42/9/305
78.
78. A. S. Landsman, S. A. Cohen, and A. H. Glasser, Phys. Plasmas 11, 947 (2004).
http://dx.doi.org/10.1063/1.1638751
79.
79. M. Tuszewski and R. K. Linford, Phys. Fluids 25, 765 (1982).
http://dx.doi.org/10.1063/1.863831
80.
80. R. E. Chrien and S. Okada, Phys. Fluids 30, 3574 (1987).
http://dx.doi.org/10.1063/1.866438
81.
81. T. Ikeyama, M. Hiroi, Y. Nogi, and Y. Ohkuma, Phys. Plasmas 16, 042512 (2009).
http://dx.doi.org/10.1063/1.3125304
82.
82. S. Okada, Y. Kiso, S. Goto, and T. Ishimura, Phys. Fluids B 1, 2422 (1989).
http://dx.doi.org/10.1063/1.859177
83.
83. L. Steinhauer, Phys. Plasmas 15, 012505 (2008).
http://dx.doi.org/10.1063/1.2834271
84.
84. L. C. Steinhauer and T. P. Intrator, Phys. Plasmas 16, 072501 (2009).
http://dx.doi.org/10.1063/1.3157253
85.
85. L. C. Steinhauer, Phys. Fluids B 2, 3081 (1990).
http://dx.doi.org/10.1063/1.859219
86.
86. P. B. Parks and M. J. Schaffer, Phys. Plasmas 10, 1411 (2003).
http://dx.doi.org/10.1063/1.1566025
87.
87. L. C. Steinhauer, H. Guo, A. Hoffman, A. Ishida, and D. Ryutov, Phys. Plasmas 13, 056119 (2006).
http://dx.doi.org/10.1063/1.2177635
88.
88. M. Tuszewski and B. L. Wright, Phys. Rev. Lett. 63, 2236 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.2236
89.
89. H. Y. Guo, A. L. Hoffman, K. E. Miller, and L. C. Steinhauer, Phys. Rev. Lett. 92, 245001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245001
90.
90. H. Y. Guo, A. L. Hoffman, R. D. Milroy, K. E. Miller, and G. R. Votroubek, Phys. Rev. Lett. 94, 185001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.185001
91.
91. A. L. Hoffman, H. Y. Guo, K. E. Miller, and R. D. Milroy, Nucl. Fusion 45, 176 (2005).
http://dx.doi.org/10.1088/0029-5515/45/3/003
92.
92. S. Okada, Y. Kiso, S. Goto, and T. Ishimura, J. Appl. Phys. 65, 4625 (1989).
http://dx.doi.org/10.1063/1.343260
93.
93. E. L. Rudin, S. Zhang, T. P. Intrator, and G. A. Wurden, Phys. Plasmas 13, 122505 (2006).
http://dx.doi.org/10.1063/1.2402130
94.
94. W. T. Armstrong, R. K. Linford, J. Lipson, D. A. Platts, and E. G. Sherwood, Phys. Fluids 24, 2068 (1981).
http://dx.doi.org/10.1063/1.863303
95.
95. Y. Suzuki, S. Okada, and S. Goto, Phys. Plasmas 7, 4062 (2000).
http://dx.doi.org/10.1063/1.1289513
96.
96. H. Ohtani, R. Horiuchi, and T. Sato, Plasma Phys. 10, 145 (2003).
http://dx.doi.org/10.1063/1.1526703
97.
97. L. C. Steinhauer and A. Ishida, Phys. Fluids B 4, 645 (1992).
http://dx.doi.org/10.1063/1.860262
98.
98. J. T. Slough, A. L. Hoffman, R. D. Milroy, R. Maqueda, and L. C. Steinhauer, Phys. Plasmas 2, 2286 (1995).
http://dx.doi.org/10.1063/1.871251
99.
99. M. Tuszewski, Plasma Phys. Controlled Fusion 26, 991 (1984).
http://dx.doi.org/10.1088/0741-3335/26/8/004
100.
100. R. D. Milroy and J. U. Brackbill, Phys. Fluids 29, 1184 (1986).
http://dx.doi.org/10.1063/1.865867
101.
101. Yu. A. Omelchenko, Phys. Plasmas 7, 1443 (2000).
http://dx.doi.org/10.1063/1.873963
102.
102. E. V. Belova, R. C. Davidson, H. Ji, M. Yamada, C. D. Cothran, M. R. Brown, and M. J. Schaffer, Nucl. Fusion 46, 162 (2006).
http://dx.doi.org/10.1088/0029-5515/46/1/018
103.
103. H. Y. Guo, A. L. Hoffman, L. C. Steinhauer, and K. E. Miller, Phys. Rev. Lett. 95, 175001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.175001
104.
104. K. Kitano, K. Yamanaka, S. Okada, and S. Goto, Phys. Plasmas 7, 1158 (2000).
http://dx.doi.org/10.1063/1.873924
105.
105. K. Kitano, S. Maeshima, S. Okada, and S. Goto, Phys. Plasmas 8, 3630 (2001).
http://dx.doi.org/10.1063/1.1381015
106.
106. Ts. Takahashi, H. Gota, and Y. Nogi, Phys. Plasmas 11, 4462 (2004).
http://dx.doi.org/10.1063/1.1776563
107.
107. Y. Petrov, X. Yang, and T.-S. Huang, Phys. Plasmas 15, 072509 (2008).
http://dx.doi.org/10.1063/1.2952293
108.
108. L. C. Steinhauer, Phys. Fluids 24, 328 (1981).
http://dx.doi.org/10.1063/1.863363
109.
109. L. C. Steinhauer, Phys. Plasmas 9, 3851 (2002).
http://dx.doi.org/10.1063/1.1494823
110.
110. A. I. D. Macnab, R. D. Milroy, C. C. Kim, and C. R. Sovinec, Phys. Plasmas 14, 092503 (2007).
http://dx.doi.org/10.1063/1.2768017
111.
111. D. D. Ryutov, Phys. Plasmas 14, 022506 (2007).
http://dx.doi.org/10.1063/1.2435705
112.
112. E. V. Belova, R. C. Davidson, H. Ji, and M. Yamada, Phys. Plasmas 13, 056115 (2006).
http://dx.doi.org/10.1063/1.2179426
113.
113. Y. Ono, T. Matsuyama, K. Umeda, and E. Kawamori, Nucl. Fusion 43, 649 (2003).
http://dx.doi.org/10.1088/0029-5515/43/8/301
114.
114. C. D. Cothran, J. Fung, M. R. Brown, M. J. Schaffer, and E. Belova, J. Fusion Energy 26, 37 (2007).
http://dx.doi.org/10.1007/s10894-006-9045-2
115.
115. N. Yamamoto, Y. Matsuzawa, Y. Komoriya, Y. Hirayama, T. Asai, Ts. Takahashi, and T. Takahashi, Trans. Fusion Sci. Technol. 55, 87 (2009).
116.
116. M. Tuszewski, G. A. Barnes, R. E. Chrien, W. N. Hugrass, D. J. Rej, R. E. Siemon, and B. Wright, Phys. Fluids 31, 946 (1988).
http://dx.doi.org/10.1063/1.866780
117.
117. T. Takahashi, H. Yamaura, F. P. Iizima, Y Kondoh, T. Asai, Ts. Takahashi, Y. Matsuzawa, T. Okano, Y. Hirano, N. Mizuguchi, Y. Tomita, and S. Inagaki, Plasma Fusion Res.: Rapid Commun. 2, 008 (2007).
http://dx.doi.org/10.1585/pfr.2.008
118.
118. H. Yamaura, T. Takahashi, Y. Kondoh, T. Asai, and Ts. Takahashi, Trans. Fusion Sci. Technol. 51, 373 (2007).
119.
119. L. C. Steinhauer, Phys. Fluids 29, 3379 (1986).
http://dx.doi.org/10.1063/1.865853
120.
120. S. Okada, S. Ueki, H. Himura, and S. Goto, Trans. Fusion Technol. 27, 341 (1995).
121.
121. Re the “intuitive” form of δW, Eq. (5.191) in J. P. Freidberg, Rev. Mod. Phys. 54, 801 (1982).
122.
122. M. N. Rosenbluth and M. N. Bussac, Nucl. Fusion 19, 489 (1979).
http://dx.doi.org/10.1088/0029-5515/19/4/007
123.
123. M. Tuszewski, Rev. Sci. Intrum. 61, 2937 (1990).
http://dx.doi.org/10.1063/1.1141782
124.
124. M. Tuszewski, D. P. Taggart, R. E. Chrien, D. J. Rej, R. E. Siemon, and B. L. Wright, Phys. Fluids B 3, 2856 (1991).
http://dx.doi.org/10.1063/1.860000
125.
125. J. T. Slough and A. L. Hoffman, Phys. Fluids B 5, 4366 (1993).
http://dx.doi.org/10.1063/1.860554
126.
126. X. Yang, Y. Petrov, and T. S. Huang, Phys. Rev. Lett. 102, 255004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.255004
127.
127. S. Yoshimura, S. Sugimoto, and S. Okada, Phys. Plasmas 14, 112514 (2007).
http://dx.doi.org/10.1063/1.2814048
128.
128. T. Asai, T. Takahashi, T. Kiguchi, Y. Matsuzawa, and Y. Nogi, Phys. Plasmas 13, 072508 (2006).
http://dx.doi.org/10.1063/1.2217932
129.
129. T. Kiguchi, T. Asai, N. Yamamoto, S. Hiromori, T. Okana, Ts. Takahashi, T. Takahashi, Y. Nogi, and S. Inagaki, Plasma Fusion Res. 2, S1122 (2007).
http://dx.doi.org/10.1585/pfr.2.S1122
130.
130. M. Tuszewski, W. T. Armstrong, R. E. Chrien, W. N. Hugrass, K. F. McKenna, D. J. Rej, R. E. Siemon, D. P. Taggart, and B. L. Wright, Phys. Fluids B 3, 2844 (1991).
http://dx.doi.org/10.1063/1.859918
131.
131. Y. Ono, M. Inomoto, Y. Ueda, T. Matsuyama, and T. Okazaki, Nucl. Fusion 39, 2001 (1999).
http://dx.doi.org/10.1088/0029-5515/39/11Y/346
132.
132. H. Ji, E. Belova, S. P. Gerhardt, and M. Yamada, J. Fusion Energy 26, 93 (2007).
http://dx.doi.org/10.1007/s10894-006-9043-4
133.
133. R. Horiuchi and T. Sato, Phys. Fluids B 1, 581 (1989).
http://dx.doi.org/10.1063/1.859118
134.
134. R. D. Milroy, D. C. Barnes, R. C. Bishop, and R. B. Webster, Phys. Fluids B 1, 1225 (1989).
http://dx.doi.org/10.1063/1.858998
135.
135. L.C. Steinhauer, A. Ishida, and R. Kanno, Phys. Plasmas 1, 1523 (1994).
http://dx.doi.org/10.1063/1.870703
136.
136. N. Iwasawa, A. Ishida, and L. C. Steinhauer, Phys. Plasmas 7, 931 (2000).
http://dx.doi.org/10.1063/1.873890
137.
137. D.C. Barnes, Phys. Plasmas 9, 560 (2002).
http://dx.doi.org/10.1063/1.1435425
138.
138. H. Ji, M. Yamada, R. Kulsrud, N. Pomphrey, and H. Himura, Phys. Plasmas 5, 3685 (1998).
http://dx.doi.org/10.1063/1.872978
139.
139. E. Frieman and M. Rotenberg, Rev. Mod Phys. 32, 898 (1960).
http://dx.doi.org/10.1103/RevModPhys.32.898
140.
140. A. Ishida, H. Momota, and L. C. Steinhauer, Phys. Fluids 31, 3024 (1988).
http://dx.doi.org/10.1063/1.866959
141.
141. S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4863
142.
142. J. T. Slough and A. L. Hoffman, Nucl. Fusion 28, 1121 (1993).
http://dx.doi.org/10.1088/0029-5515/28/6/016
143.
143. M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl. Fusion Suppl. Part 1, 143 (1962).
144.
144. L. C. Steinhauer and A. Ishida, Phys. Fluids B 2, 2422 (1990).
http://dx.doi.org/10.1063/1.859507
145.
145. A. Ishida, L. C. Steinhauer, and H. L. Berk, Phys. Fluids B 3, 1552 (1991).
http://dx.doi.org/10.1063/1.859673
146.
146. A. Ishida, R. Kanno, and L. C. Steinhauer, Phys. Fluids B 4, 1280 (1992).
http://dx.doi.org/10.1063/1.860083
147.
147. D. C. Barnes, J. L. Schwarzmeier, H. R. Lewis, and C. E. Seyler, Phys. Fluids 29, 2616 (1986).
http://dx.doi.org/10.1063/1.865503
148.
148. Z. Mikic and E. C. Morse, Phys. Fluids 30, 2806 (1987).
http://dx.doi.org/10.1063/1.866046
149.
149. E. J. Horowitz, D. E. Shumaker, and D. V. Anderson, J. Comput. Phys. 84, 279 (1989).
http://dx.doi.org/10.1016/0021-9991(89)90234-9
150.
150. Y. A. Omelchenko, M. J. Schaffer, and P. B. Parks, Phys. Plasmas 8, 4463 (2001).
http://dx.doi.org/10.1063/1.1401119
151.
151. K. Nishimura, R. Horiuchi, and T. Sato, Phys. Plasmas 4, 4035 (1997).
http://dx.doi.org/10.1063/1.872524
152.
152. For Rayleigh-Taylor modes the criterion is |V′| > γ /√2, Re S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, England, 1961).
153.
153. D. Ryutov as quoted in Refs. 43 and 137.
154.
154. A. Ishida, N. Shibata, and L. C. Steinhauer, Phys. Plasmas 1, 4022 (1994).
http://dx.doi.org/10.1063/1.870872
155.
155. A. Ishida, N. Shibata, and L. C. Steinhauer, Phys. Plasmas 3, 4278 (1996).
http://dx.doi.org/10.1063/1.871558
156.
156. T. Ikeyama, M. Hiroi, Y. Ohkuma, and Y. Nogi, Phys. Plasmas 17, 012501 (2010).
http://dx.doi.org/10.1063/1.3280023
157.
157. Y. Ito, N. Arai, Y. Ueda, S. Sugimoto, S. Okada, S. Goto, and T. Ishimura, Jpn J. Appl. Phys., Part 1 30, 1475 (1991).
http://dx.doi.org/10.1143/JJAP.30.1475
158.
158. T. Ohtsuka, M. Okubo, S. Okada, and S. Goto, Phys. Plasmas 5, 3649 (1998).
http://dx.doi.org/10.1063/1.873083
159.
159. R. D. Milroy and L. C. Steinhauer, Phys. Plasmas 15, 022508 (2008).
http://dx.doi.org/10.1063/1.2842361
160.
160. H. L. Berk, D. D. Schnack, and J. M. Sayer, Phys. Fluids 25, 473 (1982).
http://dx.doi.org/10.1063/1.863759
161.
161. L. Steinhauer and D. C. Barnes, Phys. Plasmas 16, 092505 (2009).
http://dx.doi.org/10.1063/1.3223847
162.
162. T. Ishimura, Phys. Fluids 27, 2139 (1984)
http://dx.doi.org/10.1063/1.864839
163.
163. K. Fujimoto, A. Hoshikawa, S. Ohmura, T. Takahashi, Y. Nogi, and Y. Ohkuma, Phys. Plasmas 9, 171 (2002).
http://dx.doi.org/10.1063/1.1416880
164.
164. K. Fujimoto, M. Okada, H. Gota, Y. Hasegawa, T. Fujino, T. Asai, T. Takahashi, Y. Nogi, and Y. Ohkuma, Phys. Plasmas 12, 102513 (2005).
http://dx.doi.org/10.1063/1.2089981
165.
165. C. Litwin and R. N. Sudan, Phys. Fluids 31, 423 (1988).
http://dx.doi.org/10.1063/1.866823
166.
166. S. Okada, T. Asai, F. Odera, K. Kitano, Y. Suzuki, K. Yamanaka, T. Kanki, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi, and S. Goto, Nucl. Fusion 41, 625 (2001).
http://dx.doi.org/10.1088/0029-5515/41/5/316
167.
167. T. Asai, M. Inomoto, N. Iwasawa, S. Okada, and S. Goto, Phys. Plasmas 10, 3608 (2003).
http://dx.doi.org/10.1063/1.1596393
168.
168. J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.1139
169.
169. L. Woltjer, Proc. Natl. Acad. Sci. USA 44, 489 (1958).
http://dx.doi.org/10.1073/pnas.44.6.489
170.
170. L. Woltjer, Proc. Natl. Acad. Sci. USA 44, 769 (1958).
171.
171. L. Woltjer, Proc. Natl. Acad. Sci. USA 44, 833 (1958).
http://dx.doi.org/10.1073/pnas.44.9.833
172.
172. D. R. Wells and J. Norwood, Jr., J. Plasma Phys. 3, 21 (1969).
http://dx.doi.org/10.1017/S0022377800004165
173.
173. D. Montgomery, L. Turner, and G. Vahala, Phys. Fluids 21, 757 (1978).
http://dx.doi.org/10.1063/1.862295
174.
174. R.N. Sudan, Phys. Rev. Lett. 42, 1277 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1277
175.
175. E. Hameiri and J. H. Hammer, Phys. Fluids 25, 1855 (1982).
http://dx.doi.org/10.1063/1.863664
176.
176. J. M. Finn and T. M. Antonsen, Jr., Phys. Fluids 26, 3540 (1983).
http://dx.doi.org/10.1063/1.864115
177.
177. J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.741
178.
178. M. R. Brown, J. Plasma Phys. 52, 293 (1997).
179.
179. L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986).
http://dx.doi.org/10.1109/TPS.1986.4316633
180.
180. L. C. Steinhauer and A. Ishida, Phys. Rev. Lett. 79, 3423 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3423
181.
181. L. C. Steinhauer and A. Ishida, Phys. Plasmas 5, 2609 (1998).
http://dx.doi.org/10.1063/1.872948
182.
182. B. Dasgupta, P. Dasgupta, M. S. Janaki, T. Watanabe, and T. Sato, Phys. Rev. Lett. 81, 3144 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3144
183.
183. R. Farengo and J. R. Sobehart, Plasma Phys. Control. Fusion 36, 465 (1994).
http://dx.doi.org/10.1088/0741-3335/36/3/007
184.
184. Y. Kondoh, Phys. Rev. E 48, 2975 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.2975
185.
185. Z. Yoshida and S. Mahajan, Phys. Rev. Lett. 88, 095001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.095001
186.
186. V. A. Izzo and T. R. Jarboe, Phys. Plasmas 12, 056109 (2005).
http://dx.doi.org/10.1063/1.1882312
187.
187.The electrostatic energy density ɛ0E2/2 is also part of the ordered energy, but this is negligible in situations where charge neutrality applies, Re Ref. 179.
188.
188. H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).
http://dx.doi.org/10.1017/S0022112069000991
189.
189. U. Frisch, A. Pouquet, J. Leorat, and A. Mazure, J. Fluid Mech. 68, 769 (1975).
http://dx.doi.org/10.1017/S002211207500122X
190.
190. K. Avinash and J. B. Taylor, Comments on Plasma Phys. Controlled Fusion 14, 127 (1991).
191.
191. K. Avinash, Phys. Fluids B 4, 3856 (1986)
http://dx.doi.org/10.1063/1.860342
192.
192. W. M. Elsasser, Rev. Mod. Phys. 28, 135 (1956).
http://dx.doi.org/10.1103/RevModPhys.28.135
193.
193. D. K. Bhadra and C. Chu, J. Plasma Phys. 33, 257 (1985).
http://dx.doi.org/10.1017/S002237780000249X
194.
194. S. R. Oliveira and T. Tajima, Phys. Rev. E. 52, 4287 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.4287
195.
195. W. Park, D. A. Monticello, and R. B. White, Phys. Fluids 27, 137 (1984).
http://dx.doi.org/10.1063/1.864502
196.
196. L. C. Steinhauer, Phys. Plasmas 9, 3767 (2002).
http://dx.doi.org/10.1063/1.1503068
197.
197. S. Zhu, R. Horiuchi, and T. Sato, Phys. Rev. E 51, 6047 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.6047
198.
198. S. Zhu, R. Horiuchi, and T. Sato, Phys. Plasmas 3, 2821 (1996).
http://dx.doi.org/10.1063/1.871717
199.
199. D. Pfirsch and R. N. Sudan, Phys. Plasmas 3, 29 (1996).
http://dx.doi.org/10.1063/1.871833
200.
200. D. R. Wells, J. Plasma Phys. 4, 645 (1970).
http://dx.doi.org/10.1017/S0022377800005341
201.
201. S. Ohsaki and Z. Yoshida, Phys. Plasmas 10, 3853 (2003).
http://dx.doi.org/10.1063/1.1606448
202.
202. P. Geren and L. C. Steinhauer, Phys. Plasmas 11, 3646 (2004).
http://dx.doi.org/10.1063/1.1759336
203.
203. Y. Ono, M. Katsurai, and M. Yamada, AIP Conf. Proc. 311, 186 1994.
http://dx.doi.org/10.1063/1.46558
204.
204. H. Y. Guo, A. L. Hoffman, L. C. Steinhauer, K. E. Miller, and R. D. Milroy, Phys. Rev. Lett. 97, 235002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.33.1139
205.
205. S. Zhang, T. P. Intrator, G. A. Wurden, W. J. Waganaar, J. M. Taccetti, R. Renneke, C. Grabowski, and E. L. Ruden, Phys. Plasmas 12, 052513 (2005).
http://dx.doi.org/10.1063/1.871025
206.
206. R. M. Renneke, T. P. Intrator, S. C. Hsu, G. A. Wurden, W. J. Waganaar, E. L. Ruden, and T. C. Grabowski, Phys. Plasmas 15, 062505 (2008).
http://dx.doi.org/10.1063/1.1899648
207.
207.See Ref. 17 at http://dx.doi.org/10.1063/1.3157253 for the algorithm to solve for two-point equilibrium parameters and the FRC data compendium 4–10–09.
208.
208. K. F. McKenna, W. T. Armstrong, R. R. Bartsch, R. E. Chrien, J. C. Cochrane, Jr., R. W. Kewish, Jr., P. Klingner, R. K. Linford, D. J. Rej, E. G. Sherwood, R. E. Siemon, and M. Tuszewski, Phys. Rev. Lett. 50, 1787 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1787
209.
209. M. Tuszewski, W. T. Armstrong, R. E. Chrien, P. L. Klingner, K. F. McKenna, D. J. Rej, E. G. Sherwood, and R. E. Siemon, Phys. Fluids 29, 863 (1986).
http://dx.doi.org/10.1063/1.865888
210.
210. A. L. Hoffman, J. T. Slough, L. C. Steinhauer, N. A. Krall, and S. Hamasaki, in Proceedings of the 11th IAEA Conference, 1986 (IAEA, Vienna, 1987), Vol. 2, p. 541.
211.
211. A. L. Hoffman, L. N. Carey, E. A. Crawford, D. G. Harding, T. E. DeHart, K. F. McDonald, J. L. McNeil, R. D. Milroy, and J. T. Slough, Fusion Technol. 23, 185 (1993).
212.
212. H. Himura, S. Okada, S. Sugimoto, and S. Goto, Phys. Plasmas 2, 191 (1995).
http://dx.doi.org/10.1063/1.871090
213.
213. L. C. Steinhauer, R. D. Milroy, and J. T. Slough, Phys. Fluids 28, 888 (1985).
http://dx.doi.org/10.1063/1.865059
214.
214. R. D. Milroy and J. T. Slough, Phys. Fluids 30, 3566 (1987).
http://dx.doi.org/10.1063/1.866437
215.
215.The actual Chodura rate uses Ve*, the electron diamagnetic drift, based on the conventional picture that the electrons carry essentially all the current. Since the ions carry most of the current in FRCs, it is appropriate to use the relative drive V* = Vi*−Ve*.
216.
216. L. C. Steinhauer and J. F. Santarius, J. Fusion Energy 29, 577 (2010).
http://dx.doi.org/10.1007/s10894-010-9318-7
217.
217. R. C. Davidson and N. A. Krall, Nucl. Fusion 17, 1313 (1977).
http://dx.doi.org/10.1088/0029-5515/17/6/017
218.
218. H. U. Fahrbach, W. Koppendorfer, M. Munich, J. Neuhauser, H. Rohr, G. Schramm, J. Sommer, and E. Holzhauer, Nucl. Fusion 21, 257 (1981).
http://dx.doi.org/10.1088/0029-5515/21/2/013
219.
219. R. C. Davidson, N. T. Gladd, C. S. Wu, and J. D. Huba, Phys. Fluids 20, 301 (1977).
http://dx.doi.org/10.1063/1.861867
220.
220. H. Ji, R. Kulsrud, W. Fox, and M. Yamada, J. Geophys. Res. 110, A08212 (2005).
http://dx.doi.org/10.1029/2005JA011188
221.
221. A. L. Hoffman, R. D. Milroy, and L. C. Steinhauer, Appl. Phys. Lett. 41, 31 (1982).
http://dx.doi.org/10.1063/1.93311
222.
222. A. W. Carlson, Phys. Fluids 30, 1497 (1987).
http://dx.doi.org/10.1063/1.866263
223.
223. T. Carter, M. Yamada, H. Ji, R. Kulsrud, and F. Trintchouk, Phys. Plasmas 9, 3272 (2002).
http://dx.doi.org/10.1063/1.1494433
224.
224. N. A. Krall, Phys. Fluids B 1, 1811 (1989).
http://dx.doi.org/10.1063/1.858912
225.
225. R. Farengo, P. N. Guzdar, and Y. C. Lee, Phys. Fluids 31, 3299 (1988);
http://dx.doi.org/10.1063/1.866943
225. R. Farengo, P. N. Guzdar, and Y. C. Lee, Phys. Fluids B 1, 1654 (1989);
http://dx.doi.org/10.1063/1.858943
225. R. Farengo, P. N. Guzdar, and Y. C. Lee, Phys. Fluids B 1, 2181 (1989).
226.
226. Y. Wang, R. Kulsrud, and H. Ji, Phys. Plasma 15, 122105 (2008).
http://dx.doi.org/10.1063/1.872336
227.
227. A. El Nadi and M. N. Rosenbluth, Phys. Fluids 16, 2036 (1973).
http://dx.doi.org/10.1063/1.1694260
228.
228. H. Ji, S. Terry, M. Yamada, R. Kulsrud, A. Kuritzyn, and Y. Ren, Phys. Rev. Lett 92, 115001 (2004).
http://dx.doi.org/10.1063/1.1412600
229.
229. N. A. Krall, Phys. Fluids 30, 878 (1987).
http://dx.doi.org/10.1063/1.866340
230.
230. N. A. Krall, Phys. Fluids B 1, 2213 (1989).
http://dx.doi.org/10.1063/1.859036
231.
231. J. R. Sobehart and R. Farengo, Phys. Fluids B 2, 3206 (1990).
http://dx.doi.org/10.1063/1.859230
232.
232. A. Yu. Chirkov and V. I. Khvesyuk, Phys. Plasmas 17, 012105 (2010).
http://dx.doi.org/10.1088/0741-3335/44/2/308
233.
233. D. D. Ryutov, Phys. Plasmas 9, 4085 (2002).
http://dx.doi.org/10.1063/1.1496508
234.
234. R. Kulsrud, H. Ji, W. Fox, and M. Yamada, Phys. Plasmas 12, 082301 (2005).
http://dx.doi.org/10.1063/1.872336
235.
235. A. Hakim and U. Shumlak, Phys. Plasmas 14, 055911 (2007).
http://dx.doi.org/10.1063/1.872948
236.
236. A. B. Hassam, Comments on Plasma Phys. Controlled Fusion 14, 275 (1991).
237.
237. W. Horton, Rev. Mod. Phys. 71, 735 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.735
238.
238. Y. Matsuzawa, T. Asai, Ts. Takahashi, and T. Takahashi, Phys. Plasmas 15, 082504 (2008).
http://dx.doi.org/10.1063/1.863303
239.
239. A. L. Hoffman, H. Y. Guo, R. D. Milroy, and Z. A. Pietrzyk, Nucl. Fusion 43, 1091 (2003).
http://dx.doi.org/10.1063/1.1426102
240.
240. H. Y. Guo, A. L. Hoffman, R.D. Milroy, L. C. Steinhauer, R. D. Brooks, C. L. Deards, J. A. Grossnickle, P. Melnik, K. E. Miller, and G. C. Vlases, Phys. Plasmas 15, 056101 (2008).
http://dx.doi.org/10.1088/0029-5515/47/7/018
241.
241. J. A. Grossnickle, G. C. Vlases, A. L. Hoffman, P. A. Melnik, R. D. Milroy, A. Tankut, and K. M. Velas, Phys. Plasmas 17, 032506 (2010).
http://dx.doi.org/10.1063/1.873452
242.
242. D. D. Ryutov, J. Kesner, and M. E. Mauel, Phys. Plasmas 11, 2318 (2004).
http://dx.doi.org/10.1063/1.1690300
243.
243. L. C. Steinhauer, Phys. Fluids B 4, 4012 (1992).
http://dx.doi.org/10.1063/1.860306
244.
244. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institute Of Physics Publication, Philadelphia, 2000).
245.
245. D. D. Ryutov, Fusion Sci. Technol. 47, 148 (2005).
246.
246. A. L. Hoffman and R. D. Milroy, Phys. Fluids 26, 3170 (1983).
http://dx.doi.org/10.1063/1.864087
247.
247. M. Tuszewski, R. L. Spencer, and the FRX-C group, in Conference Record of the IEEE International conference on Plasma Science (IEEE Publishing Service, Salem, MA, 1983), p. 149.
248.
248. Q. T. Fang and G. H. Miley, in Proceedings of the 3rd Symposium on the physics and technology of Compact Toroids (Los Alamos National Laboratory, Los Alamos, New Mexico, 1980), Report LA-8700-C, p. 144.
249.
249. R. A. Clemente and L. C. Steinhauer, J. Phys. Soc. Jpn 63, 3003 (1994).
http://dx.doi.org/10.1143/JPSJ.63.3003
250.
250. T. Takahashi, Y. Tomita, H. Momota, and N. V. Shabrov, Phys. Plasmas 4, 4301 (1997).
http://dx.doi.org/10.1063/1.872592
251.
251. V. V. Mirnov and D. D. Ryutov, Sov. Tech. Phys. Lett. 5, 279 (1979).
252.
252. D. B. McColl, E. C. Morse, J. Hammer, and H. L. Berk, Nucl. Technol./Fusion 2, 80 (1982).
253.
253. Y. Ohkuma, Ts. Takahashi, K. Suzuki, and Y. Nogi, J. Phys. Soc. Jpn 63, 2845 (1994).
http://dx.doi.org/10.1143/JPSJ.63.2845
254.
254. H. Y. Guo, A. L. Hoffman, and L. C. Steinhauer, Phys. Plasmas 12, 062507 (2005).
http://dx.doi.org/10.1063/1.1426102
255.
255. T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, S. Okada, and S. Goto, Phys. Plasmas 7, 2294 (2000).
http://dx.doi.org/10.1063/1.874121
256.
256. R. F. Ellis, A. B. Hassam, S. Messer, and B. R. Osborn, Phys. Plasmas 8, 2057 (2001).
http://dx.doi.org/10.1063/1.1350957
257.
257. A. B. Hassam, Phys. Plasmas 6, 3772 (1999).
http://dx.doi.org/10.1063/1.873640
258.
258. L. C. Steinhauer, Phys. Fluids 28, 3333 (1985).
http://dx.doi.org/10.1063/1.865332
259.
259. T. S. Green and A. A. Newton, Phys. Fluids 9, 1386 (1966).
http://dx.doi.org/10.1063/1.1761857
260.
260. J. T. Slough, A. L. Hoffman, and R. D. Milroy, Phys. Fluids B 1, 840 (1989).
http://dx.doi.org/10.1063/1.859009
261.
261. B. B. Bogdanov, E. M. Golenev, P. Yu. Ishkhanov, R. Kh. Kurtmullaev, Ya. N. Laukhin, A. I. Malyutin, and S. N. Moskalenko, in Proceedings of the 13th IAEA Conference, 1991 (IAEA, Vienna, 1992), Vol. 2, p. 739.
262.
262. J. T. Slough and A. L. Hoffman, Phys. Fluids B 2, 797 (1990).
http://dx.doi.org/10.1063/1.859316
263.
263. A. L. Hoffman and J. T. Slough, Nucl. Fusion 33, 27 (1993).
http://dx.doi.org/10.1103/PhysRevLett.50.1787
264.
264. T. Intrator, M. Taccetti, D. A. Clark, et al., Nucl. Fusion 42, 211 (2002).
http://dx.doi.org/10.1103/PhysRevLett.75.1953
265.
265. Y. Ohkuma, M. Urano, M. Nakamura, Y. Narushima, Ts. Takahashi, and Y. Nogi, Nucl. Fusion 38, 1501 (1998).
http://dx.doi.org/10.1063/1.92558
266.
266. L. C. Steinhauer, Phys. Fluids 26, 254 (1983).
http://dx.doi.org/10.1063/1.864015
267.
267. A. L. Hoffman, R. D. Milroy, J. T. Slough, and L. C. Steinhauer, Fusion Technol. 9, 48 (1986).
268.
268. R. D. Milroy and J. U. Brackbill, Phys. Fluids 25, 775 (1982).
http://dx.doi.org/10.1063/1.863832
269.
269. Z. A. Pietrzyk, G. C. Vlases, R. D. Brooks, K. D. Hahn, and R. Raman, Nucl. Fusion 27, 1478 (1987).
http://dx.doi.org/10.1088/0029-5515/27/9/011
270.
270. R. Farengo and R. D. Brooks, Nucl. Fusion 32, 67 (1992).
http://dx.doi.org/10.1063/1.859950
271.
271. W. F. Pierce, R. J. Maqueda, R. D. Brooks, and R. Farengo, Nucl. Fusion 33, 117 (1993).
http://dx.doi.org/10.1063/1.860446
272.
272. R. Raman, G. C. Vlases, and T. R. Jarboe, Nucl. Fusion 33, 1685 (1993).
http://dx.doi.org/10.1063/1.865503
273.
273. W. H. Bostick and D. R. Wells, Phys. Fluids 6, 1325 (1963).
http://dx.doi.org/10.1063/1.1706902
274.
274. A. G. Es’kov, V. K. Korshunov, S. F. Krylov, R. Kh. Kurtmullaev, Ya. Laukhin, A. I. Malyutin, and V. N. Semenov, in Proceedings of the 11th European Conference on Plasma Physics and Controlled Fusion, European conference Abstracts (European Physical Society, Petit-Lancy, 1983), Vol. 7D, Pt. I, p. 171.
275.
275. S. G. Alikhanov, V. P. Bakhtin, A. G. Es’kov, R. Kh. Kurtmullaev, V. N. Semenov, E. F. Strizhov, N. P. Kozlov, V. I. Khvesyuk, and A. V. Yaminskij, in Plasma Physics and Controlled Nuclear Fusion Research, 1982 (International Atomic Energy Agency, Vienna, 1983), Vol. 3, p. 319.
276.
276. M. Tuszewski, W. T. Armstrong, R. E. Chrien, P. L. Klingner, K. F. McKenna, D. J. Rej, E. G. Sherwood, and R. E. Siemon, Phys. Fluids 29, 863 (1983).
http://dx.doi.org/10.1063/1.865888
277.
277. D. J. Rej, W. T. Armstrong, R. E. Chrien, P. L. Klingner, R. K. Linford, K. F. McKenna, E. G. Sherwood, R. E. Siemon, M. Tuszewski, and R. D. Milroy, Phys. Fluids 29, 852 (1986).
http://dx.doi.org/10.1063/1.865887
278.
278. Y. Ito, M. Tanjyo, S. Ohi, S. Goto, and T. Ishimura, Phys. Fluids 30, 168 (1987).
http://dx.doi.org/10.1063/1.866165
279.
279. A. Shiokawa, S. Okada, Y. Ito, and S. Goto, Jpn. J. Appl. Phys. 30, L1142 (1991).
http://dx.doi.org/10.1143/JJAP.30.L1142
280.
280. D. J. Rej, D. P. Taggart, M. H. Baron, R. E. Chrien, R. J. Gribble, M. Tuszewski, W. J. Waganaar, and B. L. Wright, Phys. Fluids B 4, 1909 (1992).
http://dx.doi.org/10.1063/1.860043
281.
281. A. L. Hoffman, P. Gurevich, J. Grossnickle, and J. T. Slough, Fusion Technol. 36, 109 (1999).
282.
282. J. M. Taccetti, T. P. Intrator, G. A. Wurden, et al., Rev. Sci. Instrum. 74, 4314 (2003).
http://dx.doi.org/10.1063/1.1606534
283.
283. H. Himura, S. Ueoka, M. Hase, R. Yoshida, S. Okada, and S. Goto, Phys. Plasmas 5, 4262 (1998).
http://dx.doi.org/10.1063/1.873162
284.
284. T. P. Intrator, R. E. Siemon, and P. E. Sieck, Phys. Plasmas 15, 042505 (2008).
http://dx.doi.org/10.1088/0029-5515/40/1/305
285.
285. J. T. Slough and A. L. Hoffman, Phys. Plasmas 6, 253 (1999).
http://dx.doi.org/10.1063/1.873277
286.
286. T. Fujino, H. Gota, Y. Hasegawa, Y. Kanamaru, K. Fujimoto, T. Asai, T. Takahashi, and Y. Nogi, Phys. Plasmas 13, 012511 (2006).
http://dx.doi.org/10.1063/1.865887
287.
287. Y. Matsuzawa, N. Yamamoto, K. Takao, H. Tamura, M. Hiyoshi, T. Sasaki, T. Asai, Ts. Takahashi, Y. Nogi, and To. Takahashi, Trans. Fusion Sci. Technol. 55, 76 (2009).
288.
288. D. R. Wells, Phys. Fluids 9, 1010 (1966).
http://dx.doi.org/10.1063/1.1761760
289.
289. A. I. D. Macnab and S. Woodruff, IEEE Trans. Plasma Sci. 36, 1208 (2008).
http://dx.doi.org/10.1063/1.865887
290.
290. S. P. Gerhardt, E. V. Belova, M. Yamada, H. Ji, M. Inomoto, Y. Ren, and B. McGeehan, Nucl. Fusion 48, 032001 (2008).
http://dx.doi.org/10.1063/1.873277
291.
291. S. P. Gerhardt, E. V. Belova, M. Yamada, H. Ji, Y. Ren, B. McGeehan, and M. Inomoto, Phys. Plasmas 15, 032503 (2008).
http://dx.doi.org/10.1116/1.570888
292.
292. S. P. Gerhardt, E. V. Belova, M. Yamada, H. Ji, M. Inomoto, C. M. Jacobson, R. Maqueda, B. McGeehan, and Y. Ren, Phys. Plasmas 15, 022503 (2008).
http://dx.doi.org/10.1063/1.871090
293.
293. Y. Ono, M. Yamada, T. Akao, T. Tajima, and R. Matsumoto, Phys. Rev. Lett. 76, 3328 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3328
294.
294. Y. Ono, M. Inomoto, T. Okazaki, and Y. Ueda, Phys. Plasmas 4, 1953 (1997).
http://dx.doi.org/10.1063/1.872337
295.
295. D. Brahmananda, K. Watanabe, and T. Sato, Trans. Fusion Technol. 27, 375 (1994).
296.
296. Y. Lin, X. Y. Wang, M. R. Brown, M. J. Schaffer, and C. D. Cothran, Plasma Phys. Control. Fusion 50, 074012 (2008).
http://dx.doi.org/10.1063/1.873430
297.
297. I. R. Jones, Phys. Plasmas 6, 1950 (1999).
http://dx.doi.org/10.1063/1.873452
298.
298. J. T. Slough and K. E. Miller, Phys. Plasmas 7, 1945 (2000).
http://dx.doi.org/10.1063/1.874019
299.
299. J. T. Slough and K. E. Miller, Phys. Rev. Lett. 85, 1444 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1444
300.
300. S. Okada, K. Kitano, H. Sumikura, T. Higashikozono, M. Inomoto, S. Yoshimura, and M. Ohta, Nucl. Fusion 45, 1094 (2005).
http://dx.doi.org/10.1063/1.874173
301.
301. M. Ohnishi, W. Hugrass, M. Fukuhara, T. Masaki, H. Osawa, and T. Chikano, Phys. Plasmas 15, 104504 (2008).
http://dx.doi.org/10.1063/1.1426102
302.
302. B. G. Logan, J. F. Clauser, F. H. Coensgen, D. L. Correl, W. F. Cummins, C. Gormezano, A. W. Molvik, W. E. Nexsen, T. C. Simonen, B. W. Stallard, and W. C. Turner, Phys. Rev. Lett. 37, 1468 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.1468
303.
303. H. A. Davis, R. A. Meger, and H. H. Fleischmann, Phys. Rev. Lett. 37, 542 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.542
304.
304. J. B. Greenly, D. A. Hammer, P. D. Pedrow, and R. N. Sudan, Phys. Fluids 29, 908 (1986).
http://dx.doi.org/10.1063/1.865685
305.
305. R. N. Sudan, Trans. Fusion Technol. 27, 104 (1995).
306.
306. Yu. A. Omelchenko and R. N. Sudan, Phys. Plasmas 2, 2773 (1995).
http://dx.doi.org/10.1063/1.871175
307.
307. E. Schamiloglu, J. B. Greenly, and D. A. Hammer, Phys. Fluids B 5, 3069 (1993).
http://dx.doi.org/10.1063/1.860639
308.
308. A. L. Hoffman, H. Y. Guo, K. E. Miller, and R. D. Milroy, Phys. Plasmas 13, 012507 (2006).
http://dx.doi.org/10.1088/0029-5515/37/11/I01
309.
309. J. A. Grossnickle, R. D. Brooks, C. L. Deards, A. L. Hoffman, P. A. Melnik, K. E. Miller, R. D. Milroy, A. Tankut, K. M. Velas, and G. C. Vlases, J. Fusion Energy. 29, 517 (2010).
310.
310. K. Yambe, M. Inomoto, S. Okada, Y. Kobayashi, and T. Asai, Phys. Plasmas 15, 092508 (2008).
http://dx.doi.org/10.1063/1.863303
311.
311. R. D. Milroy and K. E. Miller, Phys. Plasmas 11, 633 (2004).
http://dx.doi.org/10.1063/1.1641381
312.
312. R. D. Milroy and H. Y. Guo, Phys. Plasmas 12, 072503 (2005).
http://dx.doi.org/10.1063/1.873452
313.
313. M. Ohnishi, Nucl. Fusion 36, 232 (1996).
http://dx.doi.org/10.1063/1.859949
314.
314. R. A. Clemente, M. Gilli, and R. Farengo, Phys. Plasmas 15, 102503 (2008).
http://dx.doi.org/10.1063/1.2801481
315.
315. R. D. Milroy, Phys. Plasmas 6, 2771 (1999).
http://dx.doi.org/10.1063/1.873234
316.
316. A. L. Hoffman, Nucl. Fusion 40, 1523 (2000).
http://dx.doi.org/10.1103/PhysRevLett.44.1676
317.
317. L. C. Steinhauer, Phys. Plasmas 8, 3367 (2001).
http://dx.doi.org/10.1063/1.1377613
318.
318.M. Ohnishi and A. Ishida, Phys. Plasmas 9, 2633 (2002).
http://dx.doi.org/10.1063/1.1472504
319.
319. S. A. Cohen and R. D. Milroy, Phys. Plasmas 7, 2539 (2000).
http://dx.doi.org/10.1063/1.874094
320.
320. R. A. Clemente, J. Phys. Soc. Jpn 67, 3450 (1998).
http://dx.doi.org/10.1143/JPSJ.67.3450
321.
321. R. D. Milroy, Phys. Plasmas 7, 4135 (2000).
http://dx.doi.org/10.1063/1.1290279
322.
322. R. D. Milroy, Phys. Plasmas 8, 2804 (2001).
http://dx.doi.org/10.1063/1.1368140
323.
323. R. D. Milroy, C. C. Kim, and C. R. Sovinec, Phys. Plasmas 17, 062502 (2010).
http://dx.doi.org/10.1088/0029-5515/37/11/I01
324.
324. D. R. Welch, S. A. Cohen, T. C. Genoni, and A. H. Glasser, Phys. Rev. Lett. 105, 015002 (2010).
http://dx.doi.org/10.1103/RevModPhys.59.175
325.
325. C. L. Deards, L. C. Steinhauer, and A. L. Hoffman, “Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven FRCs,” Phys. Plasmas (submitted).
326.
326. M. Okamoto, H. L. Berk, and J. H. Hammer, Nucl. Fusion 29, 2063 (1989).
http://dx.doi.org/10.1063/1.866525
327.
327. N. Rostoker, M. W. Binderbauer, and H. J. Monkhorst, Science 278, 1419 (1997).
http://dx.doi.org/10.1126/science.278.5342.1419
328.
328. A. F. Lifschitz, R. Farengo, and N. R. Arista, Nucl. Fusion 42, 863 (2002).
http://dx.doi.org/10.1103/PhysRevLett.79.427
329.
329. A. F. Lifschitz, R. Farengo, and A. L. Hoffman, Nucl. Fusion 44, 1015 (2004).
http://dx.doi.org/10.1103/PhysRevLett.44.1676
330.
330. A. L. Hoffman, L. C. Steinhauer, H. Ferrari, and R. Farengo, Nucl. Fusion 49, 055018 (2009).
http://dx.doi.org/10.1103/PhysRevLett.97.055001
331.
331. M. Inomoto, T. Asai, and S. Okada, Nucl. Fusion 48, 035013 (2008).
http://dx.doi.org/10.1063/1.863303
332.
332. T. Takahashi, K. Inoue, N. Iwasawa, T. Ishizuka, and Y. Kondoh, Phys. Plasmas, 11, 3131 (2004).
http://dx.doi.org/10.1063/1.1724832
333.
333. T. Takahashi, T. Kato, Y. Kondoh, and N. Iwasawa, Phys. Plasmas 11, 3801 (2004).
http://dx.doi.org/10.1063/1.1764828
334.
334. T. Takahashi, Y. Hirano, T. Asai, Ts. Takahashi, Y. Tomita, N. Mizuguchi, and Y. Kondoh, J. Plasma Fusion Res. 81, 421 (2005).
http://dx.doi.org/10.1063/1.872667
335.
335. S. Okada, K. Kitano, H. Matsumoto, K. Yamanaka, T. Ohtsuka, A. K. Martin, M. Okubo, S. Yoshimura, S. Sugimoto, S. Ohi, and S. Goto, Nucl. Fusion 39, 2009 (1999).
http://dx.doi.org/10.1063/1.873083
336.
336. Y. Ono, A. Morita, T. Itagaki, and M. Katsurai, in Proceedings of the 14th International Conference, Wurzburg, Germany, 1992 (IAEA, Vienna, 1993), Vol. 2, p. 619.
337.
337. E. Kawamori, T. Sumikawa, H. Imanaka, R. Imazawa, K. Yamashita, T. Hayamizu, and Y. Ono, Nucl. Fusion 47, 1232 (2007).
http://dx.doi.org/10.1063/1.874019
338.
338. S. P. Gerhardt, E. V. Belova, M. Yamada, H. Ji, M. Inomoto, Y. Ren, and B. McGeehan, Phys. Rev. Lett. 99, 245003 (2007).
http://dx.doi.org/10.1063/1.873277
339.
339. A. B. Hassam, R. M. Kulsrud, R. J. Goldston, H. Ji, and M. Yamada, Phys. Rev. Lett. 83, 2969 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2969
340.
340. H. L. Berk, H. Momota, and T. Tajima. Phys. Fluids 30 3548 (1987).
http://dx.doi.org/10.1063/1.866525
341.
341. H. E. Ferrari and R. Farengo, Nucl. Fusion 48, 035014 (2008).
http://dx.doi.org/10.1063/1.866525
342.
342. K. Yamanaka, S. Yoshimura, K. Kitano, S. Okada, and S. Goto, Phys. Plasmas 7, 2755 (2000).
http://dx.doi.org/10.1063/1.874173
343.
343. S. Okada, K. Yamanaka, S. Yamamoto, T. Masumoto, K. Kitano, T. Asai, F. Kodera, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi, and S. Goto, Nucl. Fusion 43, 1140 (2003).
http://dx.doi.org/10.1063/1.874173
344.
344. S. Okada, M. Inomoto, S. Yamamoto, T. Masumoto, S. Yoshimura, and K. Kitano, Nucl. Fusion 47, 677 (2007).
http://dx.doi.org/10.1063/1.874173
345.
345. M. Inomoto, S. Yamamoto, N. Iwasawa, K. Kitano, and S. Okada, Phys. Plasmas 14, 102513 (2007).
http://dx.doi.org/10.1063/1.873452
346.
346. M. Ohnishi, A. Ishida, and T. Akasaka, Phys. Fluids B 5, 1842 (1993).
http://dx.doi.org/10.1063/1.860821
347.
347. T. Asai, Y. Matsuzawa, T. Okano, T. Kiguchi, K. Sakuraba, Ts. Takahashi, T. Takahashi, Y. Hirano, N. Mizuguchi, and Y. Tomita, Trans. Fusion Sci. Technol. 51, 379 (2007).
348.
348. S. A. Cohen and A. H. Glasser, Phys. Rev. Lett. 85, 5114 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5114
349.
349. A. H. Glasser and S. A. Cohen, Phys. Plasmas 9, 2093 (2002).
http://dx.doi.org/10.1063/1.1459456
350.
350. A. S. Landsman, S. A. Cohen, and A. H. Glasser, Phys. Rev. Lett. 96, 015002 (2006).
http://dx.doi.org/10.1063/1.873793
351.
351. S. A. Cohen, A. S. Landsman, and A. H. Glasser, Phys. Plasmas 14, 072508 (2007).
http://dx.doi.org/10.1063/1.873793
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/7/10.1063/1.3613680
Loading
/content/aip/journal/pop/18/7/10.1063/1.3613680
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/18/7/10.1063/1.3613680
2011-07-26
2015-08-29

Abstract

This review addresses field-reversed configurations (FRCs), which are compact-toroidal magnetic systems with little or no toroidal field and very high β (ratio of plasma pressure to magnetic pressure). Although enthusiasm for the FRC has primarily been driven by its potential for an attractive fusion reactor, this review focuses on the physics rather than on technological or engineering aspects. Major advances in both theory and experiment have taken place since the previous comprehensive FRC review in 1988. Even so many questions remain. In particular, even though FRC experiments have exhibited remarkable stability, how well this extrapolates to larger systems remains unresolved. The review considers FRCs under familiar topical categories: equilibrium, global stability, self-organization, transport, formation, and sustainment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/7/1.3613680.html;jsessionid=3rr1edspnjekq.x-aip-live-06?itemId=/content/aip/journal/pop/18/7/10.1063/1.3613680&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Review of field-reversed configurations
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/7/10.1063/1.3613680
10.1063/1.3613680
SEARCH_EXPAND_ITEM