1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/18/9/10.1063/1.3629989
1.
1. I. Gallimberti and N. Wiegart, J. Phys. D: Appl. Phys. 19, 2351 (1986).
http://dx.doi.org/10.1088/0022-3727/19/12/015
2.
2. I. Gallimberti and N. Wiegart, J. Phys. D: Appl. Phys. 19, 2363 (1986).
http://dx.doi.org/10.1088/0022-3727/19/12/016
3.
3. R. Morrow, Phys. Rev. A 35, 1778 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.1778
4.
4. E. E. Kunhardt and Y. Tzeng, Phys. Rev. A 38, 1410 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.1410
5.
5. C. Wu and E. E. Kunhardt, Phys. Rev. A 37, 4396 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.4396
6.
6. M. C. Wang and E. E. Kunhardt, Phys. Rev. A 42, 2366 (1990).
http://dx.doi.org/10.1103/PhysRevA.42.2366
7.
7. M. Seeger, L. Niemeyer, and M. Bujotzek, J. Phys. D: Appl. Phys. 42, 185205 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185205
8.
8. A. H. Guenther and J. R. Bettis, J. Phys. D: Appl. Phys. 11, 1577 (1978).
http://dx.doi.org/10.1088/0022-3727/11/12/001
9.
9. R. A. Dougal and P. F. Williams, J. Phys. D: Appl. Phys. 17, 903 (1984).
http://dx.doi.org/10.1088/0022-3727/17/5/007
10.
10. P. F. Williams and A. H. Guenther, in Gas Discharge Closing Switches, edited by G. Shaefer, M. Kristiansen, and A. Guenther (Plenum, New York, 1990), p. 145.
11.
11. H. Bluhm, Pulsed Power Systems (Springer-Verlag, Berlin, 2006).
12.
12. LSP is a software product developed by ATK Mission Research, Albuquerque, NM 87110, with initial support from the Department of Energy SBIR Program.
13.
13. D. R. Welch, D. V. Rose, M. E. Cuneo, R. B. Campbell, and T. A. Mehlhorn, Phys. Plasmas 13, 063105 (2006).
http://dx.doi.org/10.1063/1.2207587
14.
14. D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.07.015
15.
15. B. J. P. Dowds, R. K. Barrett, and D. A. Diver, Phys. Rev. E 68, 026412 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.026412
16.
16. O. Chanrion and T. Neubert, J. Comput. Phys. 227, 7222 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.04.016
17.
17. C. Montijn, W. Hundsdorfer, and U. Ebert, J. Comput. Phys. 219, 801 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.04.017
18.
18. C. Montijn, U. Ebert, and W. Hundsdorfer, Phys. Rev. E 73, 065401 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.065401
19.
19. D. Bessiéres, J. Paillol, A. Bourdon, P. Segur, and E. Marode, J. Phys. D: Appl. Phys. 40, 6559 (2007).
http://dx.doi.org/10.1088/0022-3727/40/21/016
20.
20. N. Y. Babaeva and G. V. Naidis, J. Phys. D: Appl. Phys. 35, 132 (2002).
http://dx.doi.org/10.1088/0022-3727/35/2/305
21.
21. O. Ishihara, G. Candler, C. O. Laux, A. P. Napartovich, L. C. Pitchford, J. P. Boeuf, and J. Verboncoeur, in Non-Equilibrium Air Plasmas at Atmospheric Pressure, edited by K. H. Becker , U. Kogelschatz , K. H. Schoenbach , and R. J. Barker (Institute of Physics, Philadelphia, Pennsylvania, 2005), p. 183.
22.
22. N. Liu and V. P. Pasko, J. Phys. D: Appl. Phys. 39, 327 (2006).
http://dx.doi.org/10.1088/0022-3727/39/2/013
23.
23. A. Luque, V. Ratushnaya, and U. Ebert, Appl. Phys. Lett. 90, 081501 (2007).
http://dx.doi.org/10.1063/1.2435934
24.
24. F. Brau, A. Luque, B. Meulenbroek, U. Ebert, and L. Schäfer, Phys. Rev. E 77, 026219 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.026219
25.
25. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234005 (2008).
http://dx.doi.org/10.1088/0022-3727/41/23/234005
26.
26. A. Luque, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 101, 075005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.075005
27.
27. L. Papageorgiou, A. C. Metaxas, and G. E. Georghiou, J. Phys. D: Appl. Phys. 44, 045203 (2011).
http://dx.doi.org/10.1088/0022-3727/44/4/045203
28.
28. C. Li, U. Ebert, W. J. M. Brok, and W. Hundsdorfer, J. Phys. D: Appl. Phys. 41, 032005 (2008).
http://dx.doi.org/10.1088/0022-3727/41/3/032005
29.
29. C. Li, U. Ebert, and W. Hundsdorfer, J. Phys. D: Appl. Phys. 42, 202003 (2009).
http://dx.doi.org/10.1088/0022-3727/42/20/202003
30.
30. C. Li, U. Ebert, and W. Hundsdorfer, J. Comput. Phys. 229, 200 (2010).
http://dx.doi.org/10.1016/j.jcp.2009.09.027
31.
31. K. R. LeChien, M. E. Savage, V. Anaya, D. E. Bliss, W. T. Clark, J. P. Corley, G. Feltz, J. E. Garrity, D. W. Guthrie, K. C. Hodge, J. E. Maenchen, R. Maier, K. R. Prestwich, K. W. Struve, W. A. Stygar, T. Thompson, J. Van Den Avyle, P. E. Wakeland, Z. R. Wallace, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 11, 060402 (2008).
http://dx.doi.org/10.1103/PhysRevSTAB.11.060402
32.
32. K. R. LeChien, W. A. Stygar, M. E. Savage, P. E. Wakeland, V. Anaya, D. S. Artery, M. J. Baremore, D. E. Bliss, R. Chavez, G. D. Coombs, J. P. Corley, P. A. Jones, A. K. Kipp, B. A. Lewis, J. A. Lott, J. J. Lynch, G. R. McKee, S. D. Ploor, K. R. Prestwich, S. A. Roznowski, D. C. Spenser, S. D. White, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 13, 030401 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.030401
33.
33. C. Thoma, T. P. Hughes, N. L. Bruner, T. C. Genoni, D. R. Welch, and R. E. Clark, IEEE Trans. Plasma Sci. 34, 910 (2006).
http://dx.doi.org/10.1109/TPS.2006.873255
34.
34. L. G. Christophorou and J. K. Olthoff, Fundamental Electron Interactions With Plasma Processing Gases (Kluwer Academic/Plenum, New York, 2004).
35.
35. L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry, J. Appl. Phys. 50, 6789 (1979).
http://dx.doi.org/10.1063/1.325814
36.
36. H. Itoh, Y. Miura, Y. Nakao, and H. Tagashira, J. Phys. D: Appl. Phys. 21, 922 (1988).
http://dx.doi.org/10.1088/0022-3727/21/6/010
37.
37. Y. Itikawa, Molecular Process in Plasmas (Springer-Verlag, Berlin, 2007).
38.
38. L. G. Christophorou, Atomic and Molecular Radiation Physics (Interscience, New York, 1971).
39.
39. R. Morrow, IEEE Trans. Plasma Sci. 14, 234 (1986).
http://dx.doi.org/10.1109/TPS.1986.4316534
40.
40. H. Hilmert and W. F. Schmidt, J. Phys. D: Appl. Phys. 24, 915 (1991).
http://dx.doi.org/10.1088/0022-3727/24/6/016
41.
41. L. Pitchford, S. O’Neil, and J. Rumble, Jr. , Phys. Rev. A 23, 294 (1981).
http://dx.doi.org/10.1103/PhysRevA.23.294
42.
42. K. Satoh, H. Itoh, Y. Nakao, and H. Tagashira, J. Phys. D: Appl. Phys. 21, 931 (1988).
http://dx.doi.org/10.1088/0022-3727/21/6/011
43.
43. C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991).
http://dx.doi.org/10.1109/27.106800
44.
44. C. B. Opal, W. K. Peterson, and E. C. Berry, J. Chem. Phys. 55, 4100 (1971).
http://dx.doi.org/10.1063/1.1676707
45.
45. K. Yoshida and H. Tagashira, J. Phys. D: Appl. Phys. 9, 491 (1976).
http://dx.doi.org/10.1088/0022-3727/9/3/016
46.
46. K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys. 93, 8717 (1990).
http://dx.doi.org/10.1063/1.459259
47.
47. D. M. P. Holland, D. A. Shaw, A. Hopkirk, M. A. MacDonald, and S. M. Sweeney, J. Phys. B 25, 4823 (1992).
http://dx.doi.org/10.1088/0953-4075/25/22/017
48.
48. K. Kameta, N. Kouchi, and Y. Hatano, in Springer Materials—The Landolt-Brnstein Database, Vol. 17C: Interactions of Photons and Electrons With Molecules, edited by Y. Itikawa (Springer-Verlag, Berlin, 2010), pp. 459.
49.
49. D. R. Welch, D. V. Rose, N. Bruner, R. E. Clark, B. V. Oliver, K. Hahn, and M. Johnston, Phys. Plasmas 16, 123102 (2009).
http://dx.doi.org/10.1063/1.3270471
50.
50. D. R. Welch, D. V. Rose, C. Thoma, R. E. Clark, C. B. Mostrom, W. A. Stygar, and R. J. Leeper, Phys. Plasmas 17, 072702 (2010).
http://dx.doi.org/10.1063/1.3457932
51.
51. D. R. Welch, D. V. Rose, C. Thoma, R. E. Clark, C. B. Mostrom, W. A. Stygar, and R. J. Leeper, Phys. Plasmas 18, 056303 (2011).
http://dx.doi.org/10.1063/1.3562536
52.
52. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Adam Hilger, New York, 1991).
53.
53. B. B. Godfrey, in Proceedings of the 9th Conference on the Numerical Simulation of Plasmas (Northwestern University, Evanston, IL, 1980); Mission Research Report No. AMRC-N-138, July 1980.
54.
54. B. B. Godfrey and B. C. Goplen, Bull. Am. Phys. Soc. 25, 854 (1980).
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/9/10.1063/1.3629989
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) SF6 cross sections used in this work. The cross sections are the same as given in Ref. 36, except that the single lumped excitation cross section of Itoh et al. is replaced by a new lumped excitation cross section and a single metastable excitation cross section.

Image of FIG. 2.

Click to view

FIG. 2.

Density normalized effective ionization coefficient for SF6 as a function of E 0/nn (expressed in units of Td, where 1 Td = 10−17 V cm). Results are shown for the recommended fit to experimental data given in Ref. 34, and the results of 0D swarm calculations using the cross sections are given in Fig. 1.

Image of FIG. 3.

Click to view

FIG. 3.

Total photo-absorption coefficient as a function of photon energy for SF6 (Ref. 48). At low energies, photon scattering is negligible.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Sample 1D simulations showing the impact of the photo-relaxation coefficient τr on the growth of the breakdown region around an initial seed plasma (indicated by the arrow). For all cases, n 0 = 1.3 × 1019 cm−3, E 0 = 115 kV/cm, nseed  = 3 × 109 cm−3, and the simulation time is 1.5 ns. The location of the initial seed plasma is indicated by an arrow in each frame and the positions of the anode (A) and cathode (K) boundaries are indicated.

Image of FIG. 5.

Click to view

FIG. 5.

Breakdown front speeds in the anode (solid circles) and cathode (open circles) directions as a function of applied electric field. For all cases, n 0 = 1.3 × 1019 cm−3, τr  = 0.01 ns, and nseed  = 3 × 109 cm−3.

Image of FIG. 6.

Click to view

FIG. 6.

(Color online) Number density plots [log10 (cm−3) contour levels] of the various particle species from the 2D simulation at t = 0.64 ns and τr  = 0.01 ns. The location of the initial seed plasma is indicated by the black arrow in frame (b) and the anode (A) and cathode (K) orientations are indicated at the top of the figure.

Image of FIG. 7.

Click to view

FIG. 7.

(Color online) Electric field from the 2D simulation at t = 0.64 ns and τr  = 0.01 ns. The field magnitude is shown in (b) and a line out of Ez (z) at x = 0 cm is shown in (a). The arrow at in frame (b) indicates the position of the initial seed plasma.

Image of FIG. 8.

Click to view

FIG. 8.

(Color online) Positive ion density [log10 (cm−3) contour levels] from the 3D simulation including photoionization initialized with a localized, low density seed plasma. The data are taken from the y = 0 plane of the simulation volume and τr  = 0.01 ns.

Image of FIG. 9.

Click to view

FIG. 9.

(Color online) Number density plots [log10 (cm−3) contour levels] of the various particle species from the 3D simulation including photoionization with a localized seed plasma. Data taken from the y = 0 plane of the simulation volume at t = 0.5 ns.

Image of FIG. 10.

Click to view

FIG. 10.

(Color online) Electric field magnitude from the 3D simulation in the y = 0 plane at t = 0.5 ns and τr  = 0.01 ns. The arrow indicates the position of the initial seed plasma.

Image of FIG. 11.

Click to view

FIG. 11.

Isodensity contour plots of the evolving ion density of a plasma filament in a 3D simulation. All frames show the ion density contour for ni  = 2 × 1013 cm−3. The applied electric field of 115 kV/cm points to the right along the z axis.

Loading

Article metrics loading...

/content/aip/journal/pop/18/9/10.1063/1.3629989
2011-09-07
2014-04-25

Abstract

Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/18/9/1.3629989.html;jsessionid=mf19v1b6mqeo.x-aip-live-03?itemId=/content/aip/journal/pop/18/9/10.1063/1.3629989&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases
http://aip.metastore.ingenta.com/content/aip/journal/pop/18/9/10.1063/1.3629989
10.1063/1.3629989
SEARCH_EXPAND_ITEM