1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/1/10.1063/1.3662115
1.
1. G. B. Whitham, J. Fluid Mech. 22, 273 (1965).
http://dx.doi.org/10.1017/S0022112065000745
2.
2. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974), Chap. 14 and 15.
3.
3. I. Y. Dodin and N. J. Fisch, Phys. Plasmas 19, 012102 (2012).
4.
4. H. Schamel, Phys. Plasmas 7, 4831 (2000).
http://dx.doi.org/10.1063/1.1316767
5.
5. V. L. Krasovskii, Zh. Eksp. Teor. Fiz. 95, 1951 (1989) [Sov. Phys. JETP 68, 1129 (1989)].
6.
6. V. L. Krasovskii, Zh. Eksp. Teor. Fiz. 107, 741 (1995) [JETP 80, 420 (1995)].
7.
7. D. Bénisti and L. Gremillet, Phys. Plasmas 14, 042304 (2007).
http://dx.doi.org/10.1063/1.2711819
8.
8. A. I. Matveev, Russ. Phys. J. 52, 885 (2009).
http://dx.doi.org/10.1007/s11182-010-9314-4
9.
9. D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).
http://dx.doi.org/10.1103/PhysRev.75.1851
10.
10. P. Khain and L. Friedland, Phys. Plasmas 14, 082110 (2007).
http://dx.doi.org/10.1063/1.2771515
11.
11. I. Y. Dodin and N. J. Fisch, Phys. Rev. Lett. 107, 035005 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.035005
12.
12. I. Y. Dodin and N. J. Fisch, Phys. Plasmas 19, 012104 (2012).
13.
13. For example, for anharmonic oscillations, can be constructed iteratively, along the lines of existing iterative approaches to NDR (Refs. 16 and 18). Yet, in practice, the spatial profile is most often assumed to be prescribed, e.g., sinusoidal. Within this commonly accepted approach, our method becomes particularly useful, because then is known immediately.
14.
14. B. J. Winjum, J. Fahlen, and W. B. Mori, Phys. Plasmas 14, 102104 (2007).
http://dx.doi.org/10.1063/1.2790385
15.
15. V. L. Krasovsky, Phys. Scr. 49, 489 (1994).
http://dx.doi.org/10.1088/0031-8949/49/4/016
16.
16. H. A. Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001).
http://dx.doi.org/10.1063/1.1410111
17.
17. V. L. Krasovsky, J. Plasma Phys. 73, 179 (2007).
http://dx.doi.org/10.1017/S0022377806004442
18.
18. R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007).
http://dx.doi.org/10.1063/1.2801714
19.
19. Some of the fluid nonlinearities, yielding , are retained in Eq. (10) due to the nonlinear dependence J(p). However, describing these effects accurately would require accounting for the contribution of the wave second harmonic, which is of the same order.
20.
20. T. H. Stix, Waves in Plasmas (AIP, New York, 1992), Secs. 8-6.
21.
21. R. L. Dewar, Phys. Fluids 15, 712 (1972).
http://dx.doi.org/10.1063/1.1693969
22.
22. H. Ikezi, K. Schwarzenegger, and A. L. Simons, Phys. Fluids 21, 239 (1978).
http://dx.doi.org/10.1063/1.862198
23.
23. To reduce the results of Ref. 10 to Eq. (11), the former must be amended in two aspects. First, rather than ni, it is f that must be adjusted to ensure that (i.e., must be fixed); this changes Fi. Second, when summing over the contributions of multiple waterbags in Eqs. (24)–(26) of Ref. 10, the weight must be F(JJ rather than f′Δu.
24.
24. Nonzero ∂ta and ∂xa may also yield collisionless dissipation. [See Ref. 7 and also
24. D. Bénisti, D. J. Strozzi, L. Gremillet, and O. Morice, Phys. Rev. Lett. 103, 155002 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.155002
24. D. Bénisti, O. Morice, L. Gremillet, E. Siminos, and D. J. Strozzi, Phys. Plasmas 17, 082301 (2010);
http://dx.doi.org/10.1063/1.3464467
24. D. D. Ryutov and V. N. Khudik, Zh. Teor. Eksp. Fiz. 64, 1252 (1973) [Sov. Phys. JETP 37, 637 (1973)];
24. J. E. Fahlen, B. J. Winjum, T. Grismayer, and W. B. Mori, Phys. Rev. Lett. 102, 245002 (2009);
http://dx.doi.org/10.1103/PhysRevLett.102.245002
24. J. E. Fahlen, B. J. Winjum, T. Grismayer, and W. B. Mori, Phys. Rev. E 83, 045401(R) (2011);
http://dx.doi.org/10.1103/PhysRevE.83.045401
24. J. Denavit and R. N. Sudan, Phys. Rev. Lett. 28, 404 (1972);
http://dx.doi.org/10.1103/PhysRevLett.28.404
24. J. Denavit and R. N. Sudan, Phys. Fluids 18, 1533 (1975).]
http://dx.doi.org/10.1063/1.861050
25.
25. W. M. Manheimer and R. W. Flynn, Phys. Fluids 14, 2393 (1971).
http://dx.doi.org/10.1063/1.1693347
26.
26. G. J. Morales and T. M. O’Neil, Phys. Rev. Lett. 28, 417 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.417
27.
27. A. Lee and G. Pocobelli, Phys. Fluids 15, 2351 (1972).
http://dx.doi.org/10.1063/1.1693878
28.
28. H. Kim, Phys. Fluids 19, 1362 (1976).
http://dx.doi.org/10.1063/1.861637
29.
29. D. C. Barnes, Phys. Plasmas 11, 903 (2004).
http://dx.doi.org/10.1063/1.1641032
30.
30. H. A. Rose, Phys. Plasmas 12, 012318 (2005).
http://dx.doi.org/10.1063/1.1829066
31.
31. In a homogeneous wave with varying u, passing particles conserve their canonical momentum [Eq. (5)] instead, as shown, e.g., in Refs. 10 and 18 .
32.
32. R. W. B. Best, Physica 40, 182 (1968).
http://dx.doi.org/10.1016/0031-8914(68)90016-5
33.
33. A. V. Timofeev, Zh. Eksp. Teor. Fiz. 75, 1303 (1978) [Sov. Phys. JETP 48, 656 (1978)].
34.
34. J. R. Cary, D. F. Escande, and J. L. Tennyson, Phys. Rev. A 34, 4256 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.4256
35.
35. Remember that we consider quasistationary waves, on time scales large compared to the bounce period (Paper I). No Landau damping exists in this case.
35.[R. K. Mazitov, Prikl. Mekh. Tekh. Fiz. 1, 27 (1965);
35. T. O’Neil, Phys. Fluids 8, 2255 (1965).] So the contribution from the pole in εL is zero.
http://dx.doi.org/10.1063/1.1761193
36.
36. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, New York, 1981), Sec. 29.
37.
37. I. Y. Dodin, V. I. Geyko, and N. J. Fisch, Phys. Plasmas 16, 112101 (2009).
http://dx.doi.org/10.1063/1.3250983
38.
38. M. V. Goldman and H. L. Berk, Phys. Fluids 14, 801 (1971).
http://dx.doi.org/10.1063/1.1693512
39.
39. N. G. Van Kampen, Physica 21, 949 (1955).
http://dx.doi.org/10.1016/S0031-8914(55)93068-8
40.
40. R. L. Dewar, W. L. Kruer, and W. M. Manheimer, Phys. Rev. Lett. 28, 215 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.215
41.
41. H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008).
http://dx.doi.org/10.1063/1.2901197
42.
42. N. A. Yampolsky and N. J. Fisch, Phys. Plasmas 16, 072104 (2009).
http://dx.doi.org/10.1063/1.3160604
43.
43. L. Friedland, P. Khain, and A. G. Shagalov, Phys. Rev. Lett. 96, 225001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.225001
44.
44. P. Khain and L. Friedland, Phys. Plasmas 17, 102308 (2010).
http://dx.doi.org/10.1063/1.3500246
45.
45. P. F. Schmit and N. J. Fisch, Phys. Plasmas 17, 013105 (2010).
http://dx.doi.org/10.1063/1.3298860
46.
46. A. I. Zhmoginov, I. Y. Dodin, and N. J. Fisch, Phys. Lett. A 375, 1236 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.041
47.
47. B. N. Breizman, Nucl. Fusion 50, 084014 (2010).
http://dx.doi.org/10.1088/0029-5515/50/8/084014
48.
48. M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Plasmas 17, 092305 (2010).
http://dx.doi.org/10.1063/1.3486535
49.
49. M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Rev. Lett. 102, 195003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.195003
50.
50. H. L. Berk, Transp. Theory Stat. Phys. 34, 205 (2005).
http://dx.doi.org/10.1080/00411450500274410
51.
51. The results reported in the Appendix were facilitated by Mathematica © 1988-2009 Wolfram Research, Inc., version number 7.0.1.0.
52.
52. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., National Bureau of Standards Applied Mathematics Series Vol. 55 (U.S. Dept. of Commerce, U.S. Gov. Printing Office, Washington, DC, 1972), Sec. 17.3.
53.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/1/10.1063/1.3662115
Loading
/content/aip/journal/pop/19/1/10.1063/1.3662115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/1/10.1063/1.3662115
2012-01-06
2014-09-01

Abstract

A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift ωNL is found analytically as a function of the wave amplitude a. Smooth distributions yield , as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic ωNL(a) is generally nonlocal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/1/1.3662115.html;jsessionid=uadpp4waho82.x-aip-live-03?itemId=/content/aip/journal/pop/19/1/10.1063/1.3662115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/1/10.1063/1.3662115
10.1063/1.3662115
SEARCH_EXPAND_ITEM