1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/1/10.1063/1.3677362
1.
1. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, UK, 2003).
2.
2. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (Chapman & Hall/CRC, New York, 2004).
3.
3. P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support (Cambridge University Press, Cambridge, 2005).
4.
4. D. S. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd ed. (Oxford University Press, Oxford, 2006).
5.
5. G. A. Cottrell, “Maximum entropy and plasma physics,” in Maximum Entropy in Action: A Collection of Expository Essays, edited by B. Buck and V. A. Macaulay (Oxford University Press, Oxford, UK, 1991).
6.
6. A. P. Millar, D. C. McDonald, and D. A. Diver, Plasma Phys. Controlled Fusion 42, 337 (2000).
http://dx.doi.org/10.1088/0741-3335/42/3/310
7.
7. R. Fischer, A. Dinklage, and E. Pasch, Plasma Phys. Controlled Fusion 45, 1095 (2003).
http://dx.doi.org/10.1088/0741-3335/45/7/304
8.
8. A. Dinklage, R. Fischer, and J. Svensson, Fusion Sci. Technol. 46, 355 (2004).
9.
9. J. Svensson, A. Dinklage, J. Geiger, A. Werner, and R. Fischer, Rev. Sci. Instrum. 75, 4219 (2004).
http://dx.doi.org/10.1063/1.1789611
10.
10. J. Svensson and A. Werner, Plasma Phys. Controlled Fusion 50, 085002 (2008).
http://dx.doi.org/10.1088/0741-3335/50/8/085002
11.
11. O. Ford, J. Svensson, A. Boboc, and D. C. McDonald, Rev. Sci. Instrum. 79, 10F324 (2008).
http://dx.doi.org/10.1063/1.2956880
12.
12. M. Reginatto and A. Zimbal, Rev. Sci. Instrum. 79, 023505 (2008).
http://dx.doi.org/10.1063/1.2841695
13.
13. M. J. Hole, G. T. von Nessi, J. Bertram, J. Svensson, L. C. Appel, B. D. Blackwell, R. L. Dewar, and J. Howard, “Model data fusion: Developing Bayesian inversion to constrain equilibrium and mode structure,” in Proceedings of the 7th General Scientific Assembly of the Asia Plasma and Fusion Association (APFA2009) (Aomori, Japan, 2009).
14.
14. L. C. Appel, G. T. A. Huysmans, L. L. Lao, P. J. McCarthy, D. Muir, E. R. Solano, D. Taylor, and W. Zwingmann, “A unified approach to equilibrium reconstruction,” in 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006), P-2.184.
15.
15. J. Wesson, Tokamaks, 3rd ed. (Oxford University Press, Oxford, UK, 2004).
16.
16. I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed. (Cambridge University Press, Cambridge, 2002).
17.
17. J. Svensson and A. Werner, “Large scale Bayesian data analysis for nuclear fusion experiments,” in 2007 IEEE International Symposium on Intelligent Signal Processing (IEEE, Alcala de Henares, Spain, 2007), pp. 16.
18.
18. M. F. M. De Bock, N. J. Conway, M. J. Walsh, P. G. Carolan, and N. C. Hawkes, Rev. Sci. Instrum. 79, 10F524 (2008).
http://dx.doi.org/10.1063/1.2966459
19.
19. L. K. Urankar, IEEE Trans. Magn. 18, 1860 (1982).
http://dx.doi.org/10.1109/TMAG.1982.1062166
20.
20. J. Besag, J. R. Stat. Soc. Ser. B (Methodol.) 36, 192 (1974).
21.
21. C. E. Rasmussen and K. I. Williams, Gaussian Processes in Machine Learning, 2nd ed. (MIT, Cambridge, MA, 2006).
22.
22. J. Svensson, “Non-parametric tomography using Gaussian processes,” IEEE Trans. Image Process. (submitted).
23.
23. L. C. Appel, G. T. von Nessi, M. J. Hole, and J. Svensson, “Bayesian inference applied to magnetic equilibrium on MAST,” in Europhysics Conference Abstracts (Dublin, Ireland, 2010).
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/1/10.1063/1.3677362
Loading
/content/aip/journal/pop/19/1/10.1063/1.3677362
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/1/10.1063/1.3677362
2012-01-23
2014-07-25

Abstract

In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesiananalysis. By representing toroidalplasmacurrent as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart’s law. The use of this plasma model in the context of Bayesiananalysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes’ formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++ [Appel et al., "A unified approach to equilibrium reconstruction" Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasmacurrent profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/1/1.3677362.html;jsessionid=baqa93l7p7h1e.x-aip-live-03?itemId=/content/aip/journal/pop/19/1/10.1063/1.3677362&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evidence cross-validation and Bayesian inference of MAST plasma equilibria
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/1/10.1063/1.3677362
10.1063/1.3677362
SEARCH_EXPAND_ITEM