1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/10/10.1063/1.4757638
1.
1. F. Sahraoui, M. L. Goldstein, G. Belmont, P. Canu, and L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.131101
2.
2. S. P. Gary and C. W. Smith, “Short-wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations,” J. Geophys. Res. 114, A12105, doi:10.1029/2009JA014525 (2009).
http://dx.doi.org/10.1029/2009JA014525
3.
3. J. J. Podesta, J. E. Borovsky, and S. P. Gary, Astrophys. J. 712, 685 (2010).
http://dx.doi.org/10.1088/0004-637X/712/1/685
4.
4. O. Stawicki, S. Gary, and H. Li, J. Geophys. Res. 106, A5, doi:10.1029/2000JA000446 (2001).
http://dx.doi.org/10.1029/2000JA000446
5.
5. C. H. K. Chen, T. S. Horbury, A. A. Schekochihin, R. T. Wicks, O. Alexandrova, and J. Mitchell, Phys. Rev. Lett. 104, 255002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.255002
6.
6. T. Nieves-Chinchilla and A. F. Viñas, J. Geophys. Res. 113, A02105, doi:10.1029/2007JA012703 (2008).
http://dx.doi.org/10.1029/2007JA012703
7.
7. L. Rudakov, C. Crabtree, G. Ganguli, and M. Mithaiwala, Phys. Plasmas 19, 042704 (2012).
http://dx.doi.org/10.1063/1.3698407
8.
8. L. Rudakov, M. Mithaiwala, G. Ganguli, and C. Crabtree, Phys. Plasmas 18, 012307 (2011).
http://dx.doi.org/10.1063/1.3532819
9.
9. D. Shaikh, Mon. Not. R. Astron. Soc. 395, 22922298 (2009).
http://dx.doi.org/10.1111/j.1365-2966.2009.14702.x
10.
10. T. H. Stix, Waves in Plasmas (AIP, Melville, NY, 1992).
11.
11. B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
12.
12. O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S. J. Schwartz, and P. Robert, Phys. Rev. Lett. 103, 165003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.165003
13.
13. M. A. Shay, J. F. Drake, J. P. Eastwood, and T. D. Phan, Phys. Rev. Lett. 107, 089901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.089901
14.
14. G. Ganguli, L. Rudakov, W. Scales, J. Wang, and M. Mithaiwala, Phys. Plasmas 17, 052310 (2010).
http://dx.doi.org/10.1063/1.3420245
15.
15. A. F. Vinas C. Gurgiolo T. Nieves-Chinchilla, S. P. Gary, and M. L. Goldstein, AIP Conf. Proc. 1216, 265270 (2010).
http://dx.doi.org/10.1063/1.3395852
16.
16. C. Crabtree, L. Rudakov, G. Ganguli, and M. Mithaiwala, Phys. Plasma 19, 032903 (2012).
http://dx.doi.org/10.1063/1.3692092
17.
17. S. P. Gary, O. Chang, and J. Wang, Astrophys. J. 755, 142 (2012).
http://dx.doi.org/10.1088/0004-637X/755/2/142
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/10/10.1063/1.4757638
Loading
/content/aip/journal/pop/19/10/10.1063/1.4757638
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/10/10.1063/1.4757638
2012-10-11
2014-10-25

Abstract

It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma,whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ∼10−3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistlerturbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/10/1.4757638.html;jsessionid=7mme17qru9mjr.x-aip-live-03?itemId=/content/aip/journal/pop/19/10/10.1063/1.4757638&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/10/10.1063/1.4757638
10.1063/1.4757638
SEARCH_EXPAND_ITEM