banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The effects of laser absorption on direct-drive capsule experiments at OMEGA
Rent this article for
Access full text Article
1. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature (London) 239, 139 (1972).
2. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009).
3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, M. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997).
4. D. C. Wilson, G. A. Kyrala, J. F. Benage, Jr., F. J. Wysocki, M. A. Gunderson, W. J. Garbett, V. Yu. Glebov, J. Frenje, B. Yaakobi, H. W. Herrmann, J. H. Cooley, L. Welser-Sherrill, C. J. Horsfield, and S. A. Roberts, J. Phys.: Conf. Ser. 112, 022015 (2008).
5. W. J. Garbett, S. James, G. A. Kyrala, D. C. Wilson, J. F. Benage, F. J. Wysocki, M. A. Gunderson, J. Frenje, R. Petrasso, V. Yu. Glebov, and B. Yaakobi, J. Phys.: Conf. Ser. 112, 022016 (2008).
6. J. R. Rygg, J. A. Frenje, C. K. Li, F. H. Seguin, R. D. Petrasso, J. A. Delettrez, V. Yu. Glebov, V. N. Goncharov, D. D. Meyerhofer, S. P. Regan, T. C. Sangster, and C. Stoeckl, Phys. Plasmas 13, 056702 (2006).
7. H. W. Herrmann, J. R. Langenbrunner, J. M. Mack, J. H. Cooley, D. C. Wilson, S. C. Evans, T. J. Sedillo, G. A. Kyrala, S. E. Caldwell, C. S. Young, A. Nobile, J. Wermer, S. Paglieri, A. M. McEvoy, Y. Kim, S. H. Batha, C. J. Horsfield, D. Drew, W. Garbett, M. Rubery, V. Yu. Glebov, S. Roberts, and J. A. Frenje, Phys. Plasmas 16, 056312 (2009).
8. A. Nikroo, F. H. Elsner, D. G. Czechowicz, J. Gibson, S. E. Grant, A. L. Greenwood, M. L. Hoppe, D. Hysband, B. W. McQuillan, W. J. Miller, J. M. Ponteandolfo, D. A. Steinman, R. B. Stevens, K. R. Schulkz, and M. Takagi, “ Capsule production and development for ICF experiments,” General Atomics Report No. GA-A23228, 1999.
9. G. A. Kyrala, J. F. Benage, M. A. Gunderson, D. C. Wilson, K. A. Klare, J. Frenje, R. Petrasso, B. Yaakobi, V. Glebov, W. Garbett, and S. James, “ Post-shot report high Z implosions March 1st 2006,” Los Alamos National Laboratory Report No. LA-UR-06-5467, 2006;
9. G. A. Kyrala, “ Pre-shot report for January 18th 2007 Hi-Z experiments,” Los Alamos National Laboratory Report No. LA-UR-07-0301, 2007.
10. F. J. Marshall, J. A. Delettrez, R. Epstein, R. Forties, R. L. Keck, J. H. Kelly, P. W. McKenty, S. P. Regan, and L. J. Waxer, Phys. Plasmas 11, 251 (2004).
11. S. Skupsky and R. S. Craxton, Phys. Plasmas 6, 2157 (1999).
12. W. Kruer, “ The physics of laser-plasma interaction,” in Frontiers in Physics, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988), Vol. 73, Chaps. VII and VIII, pp. 7394.
13. W. Seka, D. H. Edgell, J. P. Knauer, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster, C. Stoeckl, R. E. Bahr, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, I. V. Igumenshchev, and D. Shvarts, Phys. Plasmas 15, 056312 (2008).
14. D. H. Edgell, W. Seka, J. A. Delettrez, R. S. Craxton, V. N. Goncharov, I. V. Igumenshchev, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster, and R. E. Bahr, Bull. Am. Phys. Soc. 54, 145 (2009).
15. R. A. Lerche, D. W. Phillion, and G. L. Tietbohl, Rev. Sci. Instrum. 66, 933 (1995).
16. J. A. Frenje, C. K. Li, F. H. Séguin, J. Deciantis, S. Kurebayashi, J. R. Rygg, R. D. Petrasso, J. Delettrez, V. Yu. Glebov, C. Stoeckl, F. J. Marshall, D. D. Meyerhofer, T. C. Sangster, V. A. Smalyuk, and J. M. Soures, Phys. Plasmas 11, 2798 (2004).
17. B. Yaakobi, S. Skupsky, R. L. McCrory, C. F. Hooper, H. Deckman, P. Bourke, and J. M. Soures, Phys. Rev. Lett. 44, 1072 (1980);
17. S. P. Regan, J. A. Delettrez, R. Epstein, P. A. Jaanimagi, B. Yaakobi, V. A. Smalyuk, F. J. Marshall, D. D. Meyerhofer, W. Seka, D. A. Haynes, I. E. Golovkin, and C. F. Hooper, Phys. Plasmas 9, 1357 (2002).
18. B. Yaakobi, R. Epstein, C. F. Hooper, Jr., D. A. Haynes, Jr., and A. Su, J. X-Ray Sci. Technol. 6, 172 (1996).
19. G. A. Kyrala, D. C. Wilson, J. F. Benage, Jr., M. Gunderson, K. Klare, J. Frenje, R. Petrasso, W. Garbett, S. James, V. Glebov, and B. Yaakobi, High Energy Density Phys. 3, 163 (2007).
20. G. Dimonte, Phys. Plasmas 7, 2255 (2000).
21. D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse, Phys. Rev. A 11, 679 (1975).
22. K. Lee, D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Fluids 20, 51 (1977).
23. R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).
24. Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).
25. R. E. Marshak, Phys. Fluids 1, 24 (1958).
26. D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover, 1999), Sec. 103, pp. 547557.
27. J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. 51, 1664 (1983).
28. J. R. Albritton, E. A. Williams, I. B. Bernstein, and K. P. Swartz, Phys. Rev. Lett. 57, 1887 (1986).
29. E. M. Epperlein and R. W. Short, Phys. Fluids B 3, 3092 (1991).
30. G. P. Schurtz, Ph. D. Nicolai, and M. Busquet, Phys. Plasmas 7, 4238 (2000).
31. V. N. Goncharov, T. C. Sangster, P. B. Radha, R. Betti, T. R. Boehly, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, R. Epstein, V. Yu. Glebov, S. X. Hu, I. V. Igumenshchev, J. P. Knauer, S. J. Loucks, J. A. Marozas, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, S. P. Regan, W. Seka, S. Skupsky, V. A. Smalyuk, J. M. Soures, C. Stoeckl, D. Shvarts, J. A. Frenje, R. D. Petrasso, C. K. Li, F. Seguin, W. Manheimer, and D. G. Colombant, Phys. Plasmas 15, 056310 (2008).
32. W. Manheimer, D. Colombant, and V. Goncharov, Phys. Plasmas 15, 083103 (2008).
33. M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan, R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter, R. A. London, J. A. Harte, and G. B. Zimmerman, High Energy Density Phys. 7, 180 (2011).
34. T. R. Boehly, V. N. Goncharov, W. Seka, M. A. Barrios, P. M. Celliers, D. G. Hicks, G. W. Collins, S. X. Hu, J. A. Marozas, and D. D. Meyerhofer, Phys. Rev. Lett. 106, 195005 (2011).
35. T. E. Blue and D. B. Harris, Nucl. Sci. Eng. 77, 463 (1981);
35. H. Azechi, N. Miyanaga, R. O. Stapf, K. Itoga, H. Nakaishi, M. Yamanaka, H. Shiraga, R. Tsuji, S. Ido, K. Nishihara, Y. Izawa, T. Yamanaka, and C. Yamanaka, Appl. Phys. Lett. 49, 555 (1986).
36. P. Amendt, O. L. Landen, H. F. Robey, C. K. Li, and R. D. Petrasso, Phys. Rev. Lett. 105, 115005 (2010).
37. P. Michel, S. H. Glenzer, L. Divol, D. K. Bradley, D. Callahan, S. Dixit, S. Glenn, D. Hinkel, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, S. Le Pape, N. B. Meezan, R. Town, K. Widmann, E. A. Williams, B. J. MacGowan, J. Lindl, and L. J. Suter, Phys. Plasmas 17, 056305 (2010).
38. I. V. Igumenshchev, D. H. Edgell, V. N. Goncharov, J. A. Delettrez, A. V. Maximov, J. F. Myatt, W. Seka, A. Shvydky, S. Skupsky, and C. Stoeckl, Phys Plasmas 17, 122708 (2010).
View: Figures


Image of FIG. 1.

Click to view

FIG. 1.

The capsules used were SiO2 shells with a typical outer diameter of 925 ± 15 μm, a thickness of 5.0 ± 0.5 μm, and an average density of 2.2 g/cm3. They were filled with a fuel mixture, which typically included 6.7 atm of deuterium and 3.3 atm of 3He. The base target was varied by including a known amount of a pre-mixed Kr gas in the fuel in the amounts of 0.00 atm (base), 0.01 atm, 0.05 atm, and 0.75 atm.

Image of FIG. 2.

Click to view

FIG. 2.

The amount of pre-mix needed to reduce the yield by 50% has been measured and plotted as a function of atomic number, Z, for the data described in Ref. 4. The data include pre-mixed He, Ar, Kr, and Xe and show that the yield reduction threshold scales as f(Z) ∼ Z −2.

Image of FIG. 3.

Click to view

FIG. 3.

Data from OMEGA shot 50 997 are shown for the time-dependent incident power (blue solid line), scattered power (solid black line), and the difference of these two signals (dashed blue line). This difference is the measurement of the laser absorption. For shot 50 997, the measured fraction of total incident energy to absorbed energy was ∼60%, while ∼80% was calculated when the full laser power was initially used in the calculation.

Image of FIG. 4.

Click to view

FIG. 4.

Examples are plotted from the two-parameter scan of shot 51 483. (a) shows the case for a yield, Y DD-n , and (b) the time where the neutron rate equals 10−2 times the peak rate (Tstart) and is approximately when the shock reflects from the center of the target. The colors, as shown in the color bar, represent the calculated quantity. Over-plotted is a white contour line, which is the set of points where the synthetic quantity agrees with experimental measurement.

Image of FIG. 5.

Click to view

FIG. 5.

The six measured quantities (contours) for shot 50 997 shown are as follows: the ion burn-temperature (cyan solid line); neutron bang time (black solid line); the total absorbed laser energy (solid green line); and the three particle yields Y DD-n (solid blue line), Y DT-n (dashed blue line), and Y D3He-p (red dashed line). Any measured quantity can be matched in a calculation by picking a point, (f e , m), along the appropriate contour. The large dots mark the multipliers used for the old (black) and new (green) calculations and are discussed in more detail in the text.

Image of FIG. 6.

Click to view

FIG. 6.

The neutron yield Y DD-n is plotted as a function of Kr-fraction in the fuel for three sets of points: the experimentally measured yields (black circles), the previous calculations (green triangles), and the new calculations (blue diamonds). There is an overlap between the three sets of points for Kr-fractions of 0.0 and ∼0.001 (n.b. the x-axis is logarithmic and a 0.0 Kr-fraction has been offset to 0.0001).

Image of FIG. 7.

Click to view

FIG. 7.

The ratio, Y DD-n /Y DT-n , is plotted as a function of the fuel Kr-fraction for the same three sets of data and simulations in Fig. 6. The ratio used in this plot, Y DD-n /Y DT-n , increases with decreasing ρR, and thus less compressed capsules appear towards the top of the plot and more compressed capsules near the bottom.

Image of FIG. 8.

Click to view

FIG. 8.

The burn-weighted ion-temperature is shown for the same set of data and simulations as in Figs. 6 and 7. At the highest Kr-fraction level of 0.04, the original calculated temperatures were substantially different from the measurements in Ref. 4.


Article metrics loading...



The yield of an inertial confinement fusion capsule can be greatly affected by the inclusion of high-Z material in the fuel, either intentionally as a diagnostic or from mixing due to hydrodynamic instabilities. To validate calculations of these conditions, glass shell targets filled with a D2 and 3He fuel mixture were fielded in experiments with controlled amounts of pre-mixed Ar, Kr, or Xe. The experiments were fielded at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using 1.0 ns square laser pulses having a total energy 23 kJ and direct drive illumination of shells with an outer diameter of ∼925 μm and a thickness of ∼5 μm. Data were collected and compared to one-dimensional integrated models for yield and burn-temperature measurements. This paper presents a critical examination of the calculational assumptions used in our experimental modeling. A modified treatment of laser-capsule interaction improves the match to the measured scattered laser light and also improves agreement for yields, burn-temperatures, and the fuel compression as measured by the ratio of two yields. Remaining discrepancies between measurement and calculation will also be discussed.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effects of laser absorption on direct-drive capsule experiments at OMEGA