1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The effects of laser absorption on direct-drive capsule experiments at OMEGA
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/4/10.1063/1.3700187
1.
1. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, Nature (London) 239, 139 (1972).
http://dx.doi.org/10.1038/239139a0
2.
2. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009).
http://dx.doi.org/10.1063/1.3116505
3.
3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, M. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997).
http://dx.doi.org/10.1016/S0030-4018(96)00325-2
4.
4. D. C. Wilson, G. A. Kyrala, J. F. Benage, Jr., F. J. Wysocki, M. A. Gunderson, W. J. Garbett, V. Yu. Glebov, J. Frenje, B. Yaakobi, H. W. Herrmann, J. H. Cooley, L. Welser-Sherrill, C. J. Horsfield, and S. A. Roberts, J. Phys.: Conf. Ser. 112, 022015 (2008).
http://dx.doi.org/10.1088/1742-6596/112/2/022015
5.
5. W. J. Garbett, S. James, G. A. Kyrala, D. C. Wilson, J. F. Benage, F. J. Wysocki, M. A. Gunderson, J. Frenje, R. Petrasso, V. Yu. Glebov, and B. Yaakobi, J. Phys.: Conf. Ser. 112, 022016 (2008).
http://dx.doi.org/10.1088/1742-6596/112/2/022016
6.
6. J. R. Rygg, J. A. Frenje, C. K. Li, F. H. Seguin, R. D. Petrasso, J. A. Delettrez, V. Yu. Glebov, V. N. Goncharov, D. D. Meyerhofer, S. P. Regan, T. C. Sangster, and C. Stoeckl, Phys. Plasmas 13, 056702 (2006).
http://dx.doi.org/10.1063/1.2192759
7.
7. H. W. Herrmann, J. R. Langenbrunner, J. M. Mack, J. H. Cooley, D. C. Wilson, S. C. Evans, T. J. Sedillo, G. A. Kyrala, S. E. Caldwell, C. S. Young, A. Nobile, J. Wermer, S. Paglieri, A. M. McEvoy, Y. Kim, S. H. Batha, C. J. Horsfield, D. Drew, W. Garbett, M. Rubery, V. Yu. Glebov, S. Roberts, and J. A. Frenje, Phys. Plasmas 16, 056312 (2009).
http://dx.doi.org/10.1063/1.3141062
8.
8. A. Nikroo, F. H. Elsner, D. G. Czechowicz, J. Gibson, S. E. Grant, A. L. Greenwood, M. L. Hoppe, D. Hysband, B. W. McQuillan, W. J. Miller, J. M. Ponteandolfo, D. A. Steinman, R. B. Stevens, K. R. Schulkz, and M. Takagi, “ Capsule production and development for ICF experiments,” General Atomics Report No. GA-A23228, 1999.
9.
9. G. A. Kyrala, J. F. Benage, M. A. Gunderson, D. C. Wilson, K. A. Klare, J. Frenje, R. Petrasso, B. Yaakobi, V. Glebov, W. Garbett, and S. James, “ Post-shot report high Z implosions March 1st 2006,” Los Alamos National Laboratory Report No. LA-UR-06-5467, 2006;
9. G. A. Kyrala, “ Pre-shot report for January 18th 2007 Hi-Z experiments,” Los Alamos National Laboratory Report No. LA-UR-07-0301, 2007.
10.
10. F. J. Marshall, J. A. Delettrez, R. Epstein, R. Forties, R. L. Keck, J. H. Kelly, P. W. McKenty, S. P. Regan, and L. J. Waxer, Phys. Plasmas 11, 251 (2004).
http://dx.doi.org/10.1063/1.1628234
11.
11. S. Skupsky and R. S. Craxton, Phys. Plasmas 6, 2157 (1999).
http://dx.doi.org/10.1063/1.873501
12.
12. W. Kruer, “ The physics of laser-plasma interaction,” in Frontiers in Physics, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988), Vol. 73, Chaps. VII and VIII, pp. 7394.
13.
13. W. Seka, D. H. Edgell, J. P. Knauer, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster, C. Stoeckl, R. E. Bahr, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, I. V. Igumenshchev, and D. Shvarts, Phys. Plasmas 15, 056312 (2008).
http://dx.doi.org/10.1063/1.2898405
14.
14. D. H. Edgell, W. Seka, J. A. Delettrez, R. S. Craxton, V. N. Goncharov, I. V. Igumenshchev, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster, and R. E. Bahr, Bull. Am. Phys. Soc. 54, 145 (2009).
15.
15. R. A. Lerche, D. W. Phillion, and G. L. Tietbohl, Rev. Sci. Instrum. 66, 933 (1995).
http://dx.doi.org/10.1063/1.1146212
16.
16. J. A. Frenje, C. K. Li, F. H. Séguin, J. Deciantis, S. Kurebayashi, J. R. Rygg, R. D. Petrasso, J. Delettrez, V. Yu. Glebov, C. Stoeckl, F. J. Marshall, D. D. Meyerhofer, T. C. Sangster, V. A. Smalyuk, and J. M. Soures, Phys. Plasmas 11, 2798 (2004).
http://dx.doi.org/10.1063/1.1695359
17.
17. B. Yaakobi, S. Skupsky, R. L. McCrory, C. F. Hooper, H. Deckman, P. Bourke, and J. M. Soures, Phys. Rev. Lett. 44, 1072 (1980);
http://dx.doi.org/10.1103/PhysRevLett.44.1072
17. S. P. Regan, J. A. Delettrez, R. Epstein, P. A. Jaanimagi, B. Yaakobi, V. A. Smalyuk, F. J. Marshall, D. D. Meyerhofer, W. Seka, D. A. Haynes, I. E. Golovkin, and C. F. Hooper, Phys. Plasmas 9, 1357 (2002).
http://dx.doi.org/10.1063/1.1456530
18.
18. B. Yaakobi, R. Epstein, C. F. Hooper, Jr., D. A. Haynes, Jr., and A. Su, J. X-Ray Sci. Technol. 6, 172 (1996).
http://dx.doi.org/10.1006/jxra.1996.0010
19.
19. G. A. Kyrala, D. C. Wilson, J. F. Benage, Jr., M. Gunderson, K. Klare, J. Frenje, R. Petrasso, W. Garbett, S. James, V. Glebov, and B. Yaakobi, High Energy Density Phys. 3, 163 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.02.018
20.
20. G. Dimonte, Phys. Plasmas 7, 2255 (2000).
http://dx.doi.org/10.1063/1.874060
21.
21. D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse, Phys. Rev. A 11, 679 (1975).
http://dx.doi.org/10.1103/PhysRevA.11.679
22.
22. K. Lee, D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Fluids 20, 51 (1977).
http://dx.doi.org/10.1063/1.861696
23.
23. R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.721
24.
24. Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).
http://dx.doi.org/10.1063/1.864744
25.
25. R. E. Marshak, Phys. Fluids 1, 24 (1958).
http://dx.doi.org/10.1063/1.1724332
26.
26. D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover, 1999), Sec. 103, pp. 547557.
27.
27. J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. 51, 1664 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1664
28.
28. J. R. Albritton, E. A. Williams, I. B. Bernstein, and K. P. Swartz, Phys. Rev. Lett. 57, 1887 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.1887
29.
29. E. M. Epperlein and R. W. Short, Phys. Fluids B 3, 3092 (1991).
http://dx.doi.org/10.1063/1.859789
30.
30. G. P. Schurtz, Ph. D. Nicolai, and M. Busquet, Phys. Plasmas 7, 4238 (2000).
http://dx.doi.org/10.1063/1.1289512
31.
31. V. N. Goncharov, T. C. Sangster, P. B. Radha, R. Betti, T. R. Boehly, T. J. B. Collins, R. S. Craxton, J. A. Delettrez, R. Epstein, V. Yu. Glebov, S. X. Hu, I. V. Igumenshchev, J. P. Knauer, S. J. Loucks, J. A. Marozas, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, S. P. Regan, W. Seka, S. Skupsky, V. A. Smalyuk, J. M. Soures, C. Stoeckl, D. Shvarts, J. A. Frenje, R. D. Petrasso, C. K. Li, F. Seguin, W. Manheimer, and D. G. Colombant, Phys. Plasmas 15, 056310 (2008).
http://dx.doi.org/10.1063/1.2856551
32.
32. W. Manheimer, D. Colombant, and V. Goncharov, Phys. Plasmas 15, 083103 (2008).
http://dx.doi.org/10.1063/1.2963078
33.
33. M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan, R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter, R. A. London, J. A. Harte, and G. B. Zimmerman, High Energy Density Phys. 7, 180 (2011).
http://dx.doi.org/10.1016/j.hedp.2011.03.008
34.
34. T. R. Boehly, V. N. Goncharov, W. Seka, M. A. Barrios, P. M. Celliers, D. G. Hicks, G. W. Collins, S. X. Hu, J. A. Marozas, and D. D. Meyerhofer, Phys. Rev. Lett. 106, 195005 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.195005
35.
35. T. E. Blue and D. B. Harris, Nucl. Sci. Eng. 77, 463 (1981);
35. H. Azechi, N. Miyanaga, R. O. Stapf, K. Itoga, H. Nakaishi, M. Yamanaka, H. Shiraga, R. Tsuji, S. Ido, K. Nishihara, Y. Izawa, T. Yamanaka, and C. Yamanaka, Appl. Phys. Lett. 49, 555 (1986).
http://dx.doi.org/10.1063/1.97093
36.
36. P. Amendt, O. L. Landen, H. F. Robey, C. K. Li, and R. D. Petrasso, Phys. Rev. Lett. 105, 115005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.115005
37.
37. P. Michel, S. H. Glenzer, L. Divol, D. K. Bradley, D. Callahan, S. Dixit, S. Glenn, D. Hinkel, R. K. Kirkwood, J. L. Kline, W. L. Kruer, G. A. Kyrala, S. Le Pape, N. B. Meezan, R. Town, K. Widmann, E. A. Williams, B. J. MacGowan, J. Lindl, and L. J. Suter, Phys. Plasmas 17, 056305 (2010).
http://dx.doi.org/10.1063/1.3325733
38.
38. I. V. Igumenshchev, D. H. Edgell, V. N. Goncharov, J. A. Delettrez, A. V. Maximov, J. F. Myatt, W. Seka, A. Shvydky, S. Skupsky, and C. Stoeckl, Phys Plasmas 17, 122708 (2010).
http://dx.doi.org/10.1063/1.3532817
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/4/10.1063/1.3700187
Loading
/content/aip/journal/pop/19/4/10.1063/1.3700187
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/4/10.1063/1.3700187
2012-04-05
2014-08-01

Abstract

The yield of an inertial confinement fusion capsule can be greatly affected by the inclusion of high-Z material in the fuel, either intentionally as a diagnostic or from mixing due to hydrodynamic instabilities. To validate calculations of these conditions, glass shell targets filled with a D2 and 3He fuel mixture were fielded in experiments with controlled amounts of pre-mixed Ar, Kr, or Xe. The experiments were fielded at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using 1.0 ns square laser pulses having a total energy 23 kJ and direct drive illumination of shells with an outer diameter of ∼925 μm and a thickness of ∼5 μm. Data were collected and compared to one-dimensional integrated models for yield and burn-temperature measurements. This paper presents a critical examination of the calculational assumptions used in our experimental modeling. A modified treatment of laser-capsule interaction improves the match to the measured scattered laser light and also improves agreement for yields, burn-temperatures, and the fuel compression as measured by the ratio of two yields. Remaining discrepancies between measurement and calculation will also be discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/4/1.3700187.html;jsessionid=55dnn5d96rmp3.x-aip-live-06?itemId=/content/aip/journal/pop/19/4/10.1063/1.3700187&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effects of laser absorption on direct-drive capsule experiments at OMEGA
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/4/10.1063/1.3700187
10.1063/1.3700187
SEARCH_EXPAND_ITEM