1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmasa)
a) Paper NI2 6, Bull. Am. Phys. Soc. 56, 184 (2011).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/5/10.1063/1.3695213
1.
1. R. R. Parker, M. Greenwald, S. C. Luckhardt, E. S. Marmar, M. Porkolab, and S. M. Wolfe, Nucl. Fusion 25, 1127 (1985).
http://dx.doi.org/10.1088/0029-5515/25/9/023
2.
2. R. V. Bravenec, K. W. Gentle, P. E. Phillips, T. R. Price, W. L. Rowan, K. Empson, W. L. Hodge, C. Klepper, T. P. Kochanski, D. M. Patterson, J. Porter, and B. Richards, Plasma Phys. Controlled Fusion 27, 1335 (1985).
http://dx.doi.org/10.1088/0741-3335/27/11/009
3.
3. Y. Shimomura, N. Suzuki, M. Sugihara, T. Tsuda, K. Odajima, and T. Tsunematsu, “Empirical scaling of energy confinement time of L-mode and optimized mode and some consideration of reactor core plasma in tokamak,” JAERI Report 87-080, 1987.
4.
4. S. Sengoku and the JFT-2M Team, J. Nucl. Mater. 145–147, 556 (1987).
http://dx.doi.org/10.1016/0022-3115(87)90399-0
5.
5. F. X. Söldner, E. R. Müller, F. Wagner, H. S. Bosch, A. Eberhagen, H. U. Fahrbach, G. Fussmann, O. Gehre, K. Gentle, J. Gernhardt, O. Gruber, W. Herrmann, G. Janeschitz, M. Kornherr, K. Kriger, H. M. Mayer, K. McCormick, H. D. Murmann, J. Neuhauser, R. Nolte, W. Poschenrieder, H. Röhr, K.-H. Steuer, U. Stroth, N. Tsois, and H. Verbeek, Phys. Rev. Lett. 61, 1105 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1105
6.
6. F. Alladio, G. Apruzzese, E. Barbato, G. Bardotti, R. Bartiromo, F. Berton, F. Bombarda, G. Bracco, S. Briguglio, G. Buceti, P. Buratti, E. Caiaffa, A. Cardinali, R. Cesario, F. Crisanti, R. De Angelis, F. De Marco, D. Frigione, L. Gabellieri, E. Giovannozzi, M. Groli, C. Imperiali, A. Mancuso, M. Marinucci, G. Mazzitelli, P. Micozzi, A. Moleti, F. Orsitto, M. Ottaviani, L. Panaccione, V. Pericoli-Ridolfini, L. Pieroni, S. Podda, G. B. Rhigetti, F. Romanelli, D. Santi, F. Santini, G. Tonini, A. A. Tuccillo, O. Tudisco, G. Vlad, V. Zanza, and M. Zerbini, in Plasma Physics and Controlled Nuclear Fusion Research, Proc. 13th Int. Conf. 1990, Washington (IAEA, Vienna, 1990), Vol. 1, p. 153.
7.
7. X. Garbet, in Controlled Fusion and Plasma Physics, Proc. 19th European Conf. (EPS, Innsbruck, 1992), Vol. 16C, p. 107.
8.
8. F. Wagner and U. Stroth, Plasma Phys. Controlled Fusion 35, 1321 (1993).
http://dx.doi.org/10.1088/0741-3335/35/10/002
9.
9. F. Ryter, K. Büchl, C. Fuchs, O. Gehre, O. Gruber, A. Herrmann, A. Kallenbach, M. Kaufmann, W. Köppendörfer, F. Mast, V. Mertens, R. Neu, S.de P. Hempel, K.-H. Steuer, and H. Zohm, Plasma Phys. Controlled Fusion 36, A99 (1994).
http://dx.doi.org/10.1088/0741-3335/36/7A/011
10.
10. G. Bracco and K. Thomsen, Nucl. Fusion 37, 759 (1997).
http://dx.doi.org/10.1088/0029-5515/37/6/I04
11.
11. C. L. Rettig, T. L. Rhodes, J. N. Leboeuf, W. A. Peebles, E. J. Doyle, G. M. Staebler, K. H. Burrell, and R. A. Moyer, Phys. Plasmas 8, 2232 (2001).
http://dx.doi.org/10.1063/1.1362537
12.
12. M. Greenwald, N. Basse, P. Bonoli, R. Bravenec, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J. Irby, B. LaBombard, L. Lin, Y. Lin, B. Lipschultz, E. Marmar, D. Mikkelsen, D. Mossessian, P. Phillips, M. Porkolab, J. Rice, W. Rowan, S. Scott, J. Snipes, J. Terry, S. Wolfe, S. Wukitch, and K. Zhurovich, Fusion Sci. Technol. 51, 266 (2007).
13.
13. L. Lin, M. Porkolab, E. M. Edlund, J. C. Rost, M. Greenwald, N. Tsujii, J. Candy, R. E. Waltz, and D.R. Mikkelsen, Plasma Phys. Contr. Fusion 51, 065006 (2009).
http://dx.doi.org/10.1088/0741-3335/51/6/065006
14.
14. J. E. Rice, B. P. Duval, M. L. Reinke, Y. A. Podpaly, A. Bortolon, R. M. Churchill, I. Cziegler, P. H. Diamond, A. Dominguez, P. C. Ennever, C. L. Fiore, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, J. W. Hughes, J. H. Irby, Y. Ma, E. S. Marmar, R. M. McDermott, M. Porkolab, N. Tsujii, and S. M. Wolfe, Nucl. Fusion 51, 083005 (2011).
http://dx.doi.org/10.1088/0029-5515/51/8/083005
15.
15. J. E. Rice, I. Cziegler, P. H. Diamond, B. P. Duval, Y. A. Podpaly, M. L. Reinke, P. C. Ennever, M. J. Greenwald, J. W. Hughes, Y. Ma, E. S. Marmar, M. Porkolab, N. Tsujii, and S. M. Wolfe, Phys. Rev. Lett. 107, 265001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.265001
16.
16. C. Angioni, R. M. McDermott, F. J. Casson, E. Fable, A. Bottino, R. Dux, R. Fischer, Y. Podoba, T. Pütterich, F. Ryter, and E. Viezzer, Phys. Rev. Lett. 107, 215003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.215003
17.
17. R. J. Goldston, Plasma Phys. Controlled Fusion 26, 87 (1984).
http://dx.doi.org/10.1088/0741-3335/26/1A/308
18.
18. P. N. Yushmanov, T. Takizuka, K. S. Riedel, O. J. W. F. Karduan, J. G. Cordey, S. M. Kaye, and D. E. Post, Nucl. Fusion 30, 1999 (1990).
http://dx.doi.org/10.1088/0029-5515/30/10/001
19.
19. C. Angioni, A. G. Peeters, F. Ryter, F. Jenko, G. D. Conway, T. Dannert, H. U. Fahrbach, M. Reich, W. Suttrop, ASDEX Upgrade Team, and L. Fattorini, Phys. Plasmas 12, 040701 (2005).
http://dx.doi.org/10.1063/1.1867492
20.
20. R. L. Watterson, R. E. Slusher, and C. M. Surko, Phys. Fluids 28, 2857 (1985).
http://dx.doi.org/10.1063/1.865206
21.
21. D. L. Brower, W. A. Peebles, S. K. Kim, N. C. Luhmann, W. M. Tang, and P. E. Phillips, Phys. Rev. Lett. 59, 48 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.48
22.
22. G. D. Conway, C. Angioni, R. Dux, F. Ryter, A. G. Peeters, J. Schirmer, C. Troester, CFN Reflectometry Group, and the ASDEX Upgrade team, Nucl. Fusion 46, S799 (2006).
http://dx.doi.org/10.1088/0029-5515/46/9/S15
23.
23. E. S. Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51, 261 (2007).
24.
24. N. P. Basse, A. Dominguez, E. M. Edlund, C. L. Fiore, R. S. Granetz, A. E. Hubbard, J. W. Hughes, I. H. Hutchinson, J. H. Irby, B. LaBombard, L. Lin, Y. Lin, B. Lipschultz, J. E. Liptac, E. S. Marmar, D. A. Mossessian, R. R. Parker, M. Porkolab, J. E. Rice, J. A. Snipes, V. Tang, J. L. Terry, S. M. Wolfe, S. J. Wukitch, K. Zhurovich, R. V. Bravenec, P. E. Phillips, W. L. Rowan, G. J. Kramer, G. Schilling, S. D. Scott, and S. J. Zweben, Fusion Sci. Technol. 51, 476 (2007).
25.
25. A. Ince-Cushman, J. E. Rice, M. Bitter, M. L. Reinke, K. W. Hill, M. F. Gu, E. Eikenberry, Ch. Broennimann, S. Scott, Y. Podpaly, S. G. Lee, and E. S. Marmar, Rev. Sci. Instrum. 79, 10E302 (2008).
http://dx.doi.org/10.1063/1.2968707
26.
26. A. Bortolon, B. P. Duval, A. Pochelon, and A. Scarabosio, Phys. Rev. Lett. 97, 235003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.235003
27.
27. B. P. Duval, A. Bortolon, A. Karpushov, R. A. Pitts, A. Pochelon, A. Scarabosio, and the TCV Team, Plasma Phys. Controlled Fusion 49, B195 (2007).
http://dx.doi.org/10.1088/0741-3335/49/12B/S18
28.
28. B. P. Duval, A. Bortolon, A. Karpushov, R. A. Pitts, A. Pochelon, O. Sauter, A. Scarabosio, G. Turri, and the TCV Team, Phys. Plasmas 15, 056113 (2008).
http://dx.doi.org/10.1063/1.2841528
29.
29. J. E. Rice, W. D. Lee, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald, A. E. Hubbard, I. H. Hutchinson, J. H. Irby, Y. Lin, D. Mossessian, J. A. Snipes, S. M. Wolfe, and S. J. Wukitch, Nucl. Fusion 44, 379 (2004).
http://dx.doi.org/10.1088/0029-5515/44/3/001
30.
30. J. E. Rice, A. E. Hubbard, J. W. Hughes, M. J. Greenwald, B. LaBombard, J. H. Irby, Y. Lin, E. S. Marmar, D. Mossessian, S. M. Wolfe, and S. J. Wukitch, Nucl. Fusion 45, 251 (2005).
http://dx.doi.org/10.1088/0029-5515/45/4/005
31.
31. L.-G. Eriksson, T. Hellsten, M. F. F. Nave, J. Brzozowski, K. Holmström, T. Johnson, J. Ongena, K.-D. Zastrow, Plasma Phys. Controlled Fusion 51, 044008 (2009).
http://dx.doi.org/10.1088/0741-3335/51/4/044008
32.
32. J. E. Rice, P. T. Bonoli, J. A. Goetz, M. J. Greenwald, I. H. Hutchinson, E. S. Marmar, M. Porkolab, S. M. Wolfe, S. J. Wukitch, and C. S. Chang, Nucl. Fusion 39, 1175 (1999).
http://dx.doi.org/10.1088/0029-5515/39/9/310
33.
33. J. E. Rice, A. Ince-Cushman, J. S. deGrassie, L.-G. Eriksson, Y. Sakamoto, A. Scarabosio, A. Bortolon, K. H. Burrell, B. P. Duval, C. Fenzi-Bonizec, M. J. Greenwald, R. J. Groebner, G. T. Hoang, Y. Koide, E. S. Marmar, A. Pochelon, and Y. Podpaly, Nucl. Fusion 47, 1618 (2007).
http://dx.doi.org/10.1088/0029-5515/47/11/025
34.
34. J. E. Rice, J. W. Hughes, P. H. Diamond, Y. Kosuga, Y. A. Podpaly, M. L. Reinke, M. J. Greenwald, Ö. D. Gürcan, T. S. Hahm, A. E. Hubbard, E. S. Marmar, C. J. McDevitt, and D. G. Whyte, Phys. Rev. Lett. 106, 215001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.215001
35.
35. J. E. Rice, A. C. Ince-Cushman, M. L. Reinke, Y. Podpaly, M. J. Greenwald, B. LaBombard, and E. S. Marmar, Plasma Phys. Controlled Fusion 50, 124042 (2008).
http://dx.doi.org/10.1088/0741-3335/50/12/124042
36.
36. P. H. Diamond, C. J. McDevitt, Ö. D. Gürcan, T. S. Hahm, and V. Naulin, Phys. Plasmas 15, 012303 (2008).
http://dx.doi.org/10.1063/1.2826436
37.
37. C. Angioni, J. Candy, E. Fable, M. Maslov, A. G. Peeters, R. E. Waltz, and H. Weisen, Phys. Plasmas 16, 060702 (2009).
http://dx.doi.org/10.1063/1.3155498
38.
38. C. Angioni, E. Fable, M. Greenwald, M. Maslov, A. G. Peeters, H. Takenaga, and H. Weisen, Plasma Phys. Controlled Fusion 51, 124017 (2009).
http://dx.doi.org/10.1088/0741-3335/51/12/124017
39.
39. E. Fable, C. Angioni, and O. Sauter, Plasma Phys. Controlled Fusion 52, 015007 (2010).
http://dx.doi.org/10.1088/0741-3335/52/1/015007
40.
40. R. M. McDermott, C. Angioni, R. Dux, E. Fable, T. Pütterich, F. Ryter, A. Salmi, T. Tala, G. Tardini, E. Viezzer, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 53, 124013 (2011).
http://dx.doi.org/10.1088/0741-3335/53/12/124013
41.
41. Y. Camenen, Y. Idomura, S. Jolliet, and A. G. Peeters, Nucl. Fusion 51, 073039 (2011).
http://dx.doi.org/10.1088/0029-5515/51/7/073039
42.
42. J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00079-2
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3695213
Loading
/content/aip/journal/pop/19/5/10.1063/1.3695213
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/5/10.1063/1.3695213
2012-03-26
2015-03-28

Abstract

Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamakplasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidalmagnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/5/1.3695213.html;jsessionid=b2moamg1pw01.x-aip-live-02?itemId=/content/aip/journal/pop/19/5/10.1063/1.3695213&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmasa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3695213
10.1063/1.3695213
SEARCH_EXPAND_ITEM