1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Laser plasma acceleratorsa)
a) Paper XR1 1, Bull. Am. Phys. Soc. 56, 358 (2011).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/5/10.1063/1.3695389
1.
1. C. Joshi, Phys. Plasmas 14, 055501 (2007).
http://dx.doi.org/10.1063/1.2721965
2.
2. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1229
3.
3. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
4.
4. C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter, Phys. Rev. Lett. 54, 2343 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.2343
5.
5. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett. 70, 37 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.37
6.
6. M. Everett, A. Lal, D. Gordon, C. Clayton, K. Marsh, and C. Joshi, Nature 368, 527 (1994).
http://dx.doi.org/10.1038/368527a0
7.
7. F. Amiranoff, D. Bernard, B. Cros, F. Jacquet, G. Matthieussent, P. Miné, P. Mora, J. Morillo, F. Moulin, A. E. Specka, and C. Stenz, Phys. Rev. Lett. 74, 5220 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.5220
8.
8. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai, Phys. Rev. Lett. 68, 48 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.48
9.
9. A. Dyson, A. Dangor, A. K. L. Dymoke-Bradshaw, T. Ashfar-Rad, P. Gibbon, A. R. Bell, C. N. Danson, C. B. Edwards, F. Amiranoff, G. Matthieusent, S. J. Karttunen, and R. R. E. Salomaa, Plasma Phys. Controlled Fusion 38, 505 (1996).
http://dx.doi.org/10.1088/0741-3335/38/4/005
10.
10. N. A. Ebrahim, J. Appl. Phys. 76, 7645 (1994).
http://dx.doi.org/10.1063/1.357937
11.
11. F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, G. Matthieussent, J. R. Marquès, P. Miné, A. Modena, P. Mora, J. Morillo, and Z. Najmudin, Phys. Rev. Lett. 81, 995 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.995
12.
12. J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, Phys. Rev. Lett. 76, 3566 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3566
13.
13. J. R. Marquès, F. Dorchies, J. P. Geindre, F. Amiranoff, J. C. Gauthier, G. Hammoniaux, A. Antonetti, P. Chessa, P. Mora, and T. M. Antonsen, Jr., Phys. Rev. Lett. 78, 3463 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.3463
14.
14. C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, Phys. Rev. Lett. 76, 3570 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3570
15.
15. N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. Downer, Nat. Phys. 2, 749 (2006).
http://dx.doi.org/10.1038/nphys442
16.
16. A. Modena, A. Dangor, Z. Najmudin, C. Clayton, K. Marsh, C. Joshi, V. Malka, C. Darrow, D. Neely, and F. Walsh, Nature 377, 606 (1995).
http://dx.doi.org/10.1038/377606a0
17.
17. N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov, A. A. Pogosova, and R. R. Ramazashvili, JETP Lett 55, 571 (1992).
18.
18. P. Mora, Phys. Fluids B 4, 1630 (1992).
http://dx.doi.org/10.1063/1.860071
19.
19. P. Sprangle and E. Esarey, Phys. Fluids B 4, 2241 (1992).
http://dx.doi.org/10.1063/1.860192
20.
20. C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis, and N. A. Ebrahim, Phys. Rev. Lett. 47, 1285 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.1285
21.
21. W. B. Mori, C. D. Decker, D. E. Hinkel, and T. Katsouleas, Phys. Rev. Lett. 72, 1482 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1482
22.
22. D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, Science 273, 472 (1996).
http://dx.doi.org/10.1126/science.273.5274.472
23.
23. C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, Phys. Rev. Lett. 79, 3909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3909
24.
24. C. E. Clayton, K.-C. Tzeng, D. Gordon, P. Muggli, W. B. Mori, C. Joshi, V. Malka, Z. Najmudin, A. Modena, D. Neely, and A. E. Dangor, Phys. Rev. Lett. 81, 100 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.100
25.
25. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, Phys. Rev. Lett. 83, 4772 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4772
26.
26. V. Malka, J. Faure, J.-R. Marquès, F. Amiranoff, J.-P. Rousseau, S. Ranc, J.-P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov, Phys. Plasmas 8, 2605 (2001).
http://dx.doi.org/10.1063/1.1374584
27.
27. V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, S. Najmudin, M. Pittman, J.-P. Rousseau, J.-N Scheurer, B. Walton, and A. E. Dangor, Science 298, 1596 (2002).
http://dx.doi.org/10.1126/science.1076782
28.
28. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).
http://dx.doi.org/10.1007/s003400200795
29.
29. W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.165002
30.
30. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4205
31.
31. S. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, A. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Nooreys, R. Viskup, B. R. Walton, and K. Krushelnick, Nature 431, 535 (2004).
http://dx.doi.org/10.1038/nature02939
32.
32. C. G. R. Geddes, C. Tóth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, Nature 431, 538 (2004).
http://dx.doi.org/10.1038/nature02900
33.
33. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, Nature 431, 541 (2004).
http://dx.doi.org/10.1038/nature02963
34.
34. F. S. Tsung, R. Narang, W. B. Mori, C. Joshi, R. A. Fonseca, and L. Silva, Phys. Rev. Lett. 93, 185002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185002
35.
35. E. Miura, K. Koyama, S. Kato, S. Saito, M. Adachi, Y. Kawada, T. Nakamura, and M. Tanimoto, Appl. Phys. Lett. 86, 251501 (2005).
http://dx.doi.org/10.1063/1.1949289
36.
36. C.-T. Hsieh, C.-M. Huang, C.-L. Chang, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 96, 095001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.095001
37.
37. B. Hidding, K.-U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J. G. Gallacher, S. P. Jamison, D. Jaroszynski, G. Pretzler, and R. Sauerbrey, Phys. Rev. Lett. 96, 105004 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.105004
38.
38. J. Osterhoff, A. Popp, Z. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Hörlein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Grüner, D. Habs, F. Krausz, S. M. Hooker, and S. Karsch, Phys. Rev. Lett. 101, 085002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.085002
39.
39. S. P. D. Mangles, A. G. R. Thomas, O. Lundh, F. Lindau, M. C. Kaluza, A. Persson, C.-G. Wahlström, K. Krushelnick, and Z. Najmudin, Phys. Plasmas 14, 056702 (2007).
http://dx.doi.org/10.1063/1.2436481
40.
40. N. Hafz, T. M. Jeong, I. W. Choi, S. K. Lee, K. H. Pae, V. V. Kulagin, J. H. Sung, T. J. Yu, K.-H. Hong, T. Hosokai, J. R. Cary, D.-K. Ko, and J. Lee, Nat. Photonics 2, 571 (2008).
http://dx.doi.org/10.1038/nphoton.2008.155
41.
41. S. Kneip, S. R. Nagel, S. F. Martins, S. P. D. Mangles, C. Bellei, O. Chekhlov, R. J. Clarke, N. Delerue, E. J. Divall, G. Doucas, K. Ertel, F. Fiuza, R. Fonseca, P. Foster, S. J. Hawkes, C. J. Hooker, K. Krushelnick, W. B. Mori, C. A. J. Palmer, K. T. Phuoc, P. P. Rajeev, J. Schreiber, M. J. V. Streeter, D. Urner, J. Vieira, L. O. Silva, and Z. Najmudin, Phys. Rev. Lett. 103, 035002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.035002
42.
42. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tòth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006).
http://dx.doi.org/10.1038/nphys418
43.
43. J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, Phys. Rev. Lett. 95, 205003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.205003
44.
44. M. Pittman, S. Ferre, J.-P. Rousseau, L. Notebaert, J.-P. Chambaret, and G. Cheriaux, Appl. Phys. B 74, 529 (2002).
http://dx.doi.org/10.1007/s003400200838
45.
45. V. Malka, C. Coulaud, J. P. Geindre, V. Lopez, Z. Najmudin, D. Neely, and F. Amiranoff, Rev. Sci. Instrum. 71, 6 (2000).
http://dx.doi.org/10.1063/1.1150619
46.
46. S. Semushin and V. Malka, Rev. Sci. Instrum. 72, 2961 (2001).
http://dx.doi.org/10.1063/1.1380393
47.
47. S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, Phys. Rev. E 58, R5257 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.R5257
48.
48. C. G. R. Geddes, K. Nakamura, G. R. Plateau, C. Tóth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.215004
49.
49. J. U. Kim, N. Hafz, and H. Suk, Phys. Rev. E 69, 026409 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.026409
50.
50. T.-Y. Chien, C.-L. Chang, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 94, 115003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.115003
51.
51. P. Tomassini, M. Galimberti, A. Giulietti, D. Giulietti, L. A. Gizzi, L. Labate, and F. Pegoraro, Phys. Rev. ST Accel. Beams 6, 121301 (2003).
http://dx.doi.org/10.1103/PhysRevSTAB.6.121301
52.
52. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).
http://dx.doi.org/10.1063/1.3469581
53.
53. A. V. Brantov, T. Z. Esirkepov, M. Kando, H. Kotaki, V. Y. Bychenkov, and S. V. Bulanov, Phys. Plasmas 15, 073111 (2008).
http://dx.doi.org/10.1063/1.2956989
54.
54. A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W. P. Leemans, Nat. Phys. 7, 862 (2011).
http://dx.doi.org/10.1038/nphys2071
55.
55. H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, Phys. Rev. Lett. 86, 1011 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1011
56.
56. K. Koyama, A. Yamazaki, A. Maekawa, M. Uesaka, T. Hosokai, M. Miyashita, S. Masuda, and E. Miura, Nucl. Instrum. Methods Phys. Res. A 608, S51 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.142
57.
57. K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, Phys. Rev. ST Accel. Beams 13, 091301 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.091301
58.
58. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
http://dx.doi.org/10.1038/nature05393
59.
59. E. Esarey, A. Ting, R. F. Hubbard, W. P. Leemans, J. Krall, and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2682
60.
60. G. Fubiani, E. Esarey, C. Schroeder, and W. Leemans, Phys. Rev. E 70, 016402 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016402
61.
61. C. Rechatin, J. Faure, A. Lifschitz, V. Malka, and E. Lefebvre, Phys. Plasmas 14, 060702 (2007).
http://dx.doi.org/10.1063/1.2741387
62.
62. X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, A. Lifschitz, and V. Malka, Phys. Plasmas 15, 113102 (2008).
http://dx.doi.org/10.1063/1.3008051
63.
63. V. Malka, J. Faure, C. Rechatin, A. Ben-Ismail, J. K. Lim, X. Davoine, and E. Lefebvre, Phys. Plasmas 16, 056703 (2009).
http://dx.doi.org/10.1063/1.3079486
64.
64. C. Rechatin, J. Faure, A. Lifschitz, X. Davoine, E. Lefebvre, and V. Malka, New J. Phys. 11, 013011 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/013011
65.
65. C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, Phys. Rev. Lett. 102, 164801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.164801
66.
66. C. Rechatin, X. Davoine, A. Lifschitz, A. Ismail, J. Lim, E. Lefebvre, J. Faure, and V. Malka, Phys. Rev. Lett. 103, 194804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.194804
67.
67. E. Oz, S. Deng, T. Katsouleas, P. Muggli, C. D. Barnes, I. Blumenfeld, F. J. Decker, P. Emma, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. Kirby, P. Krejcik, C. O’Connell, R. H. Siemann, D. Walz, D. Auerbach, C. E. Clayton, C. Huang, D. K. Johnson, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, and M. Zhou, Phys. Rev. Lett. 98, 084801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.084801
68.
68. T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, Phys. Rev. Lett. 100, 105005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.105005
69.
69. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025003
70.
70. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025004
71.
71. B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045001
72.
72. P. Mora and T. M. Antonsen, Jr., Phys. Rev. E 53, R2068 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.R2068
73.
73. C. Huang, V. Decyk, C. Ren, M. Zhou, W. Lu, W. Mori, J. Cooley, T. Antonsen, Jr., and T. Katsouleas, J. Comput. Phys. 217, 658 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.01.039
74.
74. F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, Proc. Natl. Acad. Sci. U.S.A 99, 29 (2002).
http://dx.doi.org/10.1073/pnas.262543899
75.
75. R. Fonseca, L. Silva, F. Tsung, V. Decyk, W. Lu, C. Ren, W. B. M. S. , Deng, S. Lee, T. Katsouleas, J. Adam, P. Sloot, A. Hoekstra, C. Tan, and J. Dongarra, 2331, 342 (2002).
76.
76. A. Pukhov, J. Plasma Phys. 61, 425 (1999).
http://dx.doi.org/10.1017/S0022377899007515
77.
77. E. Lefebvre, N. Cochet, S. Fritzler, V. Malka, M.-M. Alonard, J.-F. Chemin, S. Darbon, L. Disdier, J. Faure, A. Fedotoff, O. Landoas, G. Malka, V. Mot, P. Morel, M. R. L. Gloahec, A. Rouyer, C. Rubbelynck, V. Tikhonchuk, R. Wrobel, P. Audebert, and C. Rousseaux, Nucl. Fusion 43, 629 (2003).
http://dx.doi.org/10.1088/0029-5515/43/7/317
78.
78. C. Nieter and J. Cary, Lect. Notes Comput. Sci. 2331, 334 (2002).
http://dx.doi.org/10.1007/3-540-47789-6
79.
79. J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.130405
80.
80. S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori, and L. O. Silva, Nat. Phys. 6, 311 (2010).
http://dx.doi.org/10.1038/nphys1538
81.
81. J.-L. Vay, C. G. R. Geddes, E. Esarey, C. B. Schroeder, W. P. Leemans, E. Cormier-Michel, and D. P. Grote, Phys. Plasmas 18, 123103 (2011).
http://dx.doi.org/10.1063/1.3663841
82.
82. A. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, J. Comput. Phys. 228, 1803 (2009).
http://dx.doi.org/10.1016/j.jcp.2008.11.017
83.
83. X. Davoine, A. Beck, A. Lifschitz, V. Malka, and E. Lefebvre, New J. Phys. 12, 095010 (2010).
http://dx.doi.org/10.1088/1367-2630/12/9/095010
84.
84. J. Vieira, S. F. Martins, V. B. Pathak, R. A. Fonseca, W. B. Mori, and L. O. Silva, Phys. Rev. Lett. 106, 225001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.225001
85.
85. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
http://dx.doi.org/10.1038/nphys1872
86.
86. M. Fuchs, R. Weingartner, A. Popp, Z. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Z. R. Horlein, G. D. Tsakiris, U. Schramm, T. P. Rowlands-Rees, S. M. Hooker, D. Habs, F. Krausz, and F. Gruner, Nat. Phys. 5, 826 (2009).
http://dx.doi.org/10.1038/nphys1404
87.
87. H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J. G. Gallacher, E. Brunetti, R. P. Shanks, S. M. Wiggins, and D. A. Jaroszynski, Nat. Phys. 4, 130 (2008).
http://dx.doi.org/10.1038/nphys811
88.
88. A. Rousse, K. Ta Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, Phys. Rev. Lett. 93, 135005 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135005
89.
89. Y. Glinec, J. Faure, A. Lifschitz, J. M. Vieira, R. A. Fonseca, L. O. Silva, and V. Malka, Eurphys. Lett. 81, 64001 (2008).
http://dx.doi.org/10.1209/0295-5075/81/64001
90.
90. K. T. Phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert, D. Boschetto, A. Rousse, D.-E. Kim, A. Pukhov, V. Seredov, and I. Kostyukov, Phys. Plasmas 14, 080701 (2007).
http://dx.doi.org/10.1063/1.2754624
91.
91. K. Ta Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.-P. Rousseau, F. Burgy, B. Mercier, and A. Rousse, Phys. Rev. Lett. 97, 225002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.225002
92.
92. S. Fourmaux, S. Corde, K. T. Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, and J. C. Kieffer, Opt. Lett. 36, 2426 (2011).
http://dx.doi.org/10.1364/OL.36.002426
93.
93. S. Kneip, C. McGuffey, F. Dollar, M. S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S. P. D. Mangles, T. Matsuoka, Z. Najmudin, C. A. J. Palmer, J. Schreiber, W. Schumaker, A. G. R. Thomas, and V. Yanovsky, Appl. Phys. Lett. 99, 093701 (2011).
http://dx.doi.org/10.1063/1.3627216
94.
94. G. Genoud, K. Cassou, F. Wojda, H. Ferrari, C. Kamperidis, M. Burza, A. Persson, J. Uhlig, S. Kneip, S. Mangles, A. Lifschitz, B. Cros, and C.-G. Wahlstrm, Appl. Phys. B 105, 309 (2011).
http://dx.doi.org/10.1007/s00340-011-4639-4
95.
95. S. Corde, C. Thaury, K. T. Phuoc, A. Lifschitz, G. Lambert, J. Faure, O. Lundh, E. Benveniste, A. Ben-Ismail, L. Arantchuk, A. Marciniak, A. Stordeur, P. Brijesh, A. Rousse, A. Specka, and V. Malka, Phys. Rev. Lett. 107, 215004 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.215004
96.
96. S. Fritzler, E. Lefebvre, V. Malka, F. Burgy, A. E. Dangor, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, J.-P. Rousseau, and B. Walton, Phys. Rev. Lett. 92, 165006 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.165006
97.
97. C. M. S. Sears, A. Buck, K. Schmid, J. Mikhailova, F. Krausz, and L. Veisz, Phys. Rev. ST Accel. Beams 13, 092803 (2010).
http://dx.doi.org/10.1103/PhysRevSTAB.13.092803
98.
98. E. Brunetti, R. P. Shanks, G. G. Manahan, M. R. Islam, B. Ersfeld, M. P. Anania, S. Cipiccia, R. C. Issac, G. Raj, G. Vieux, G. H. Welsh, S. M. Wiggins, and D. A. Jaroszynski, Phys. Rev. Lett. 105, 215007 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.215007
99.
99. S. P. D. Mangles, A. G. R. Thomas, M. C. Kaluza, O. Lundh, F. Lindau, A. Persson, F. S. Tsung, Z. Najmudin, W. B. Mori, C.-G. Wahlström, and K. Krushelnick, Phys. Rev. Lett. 96, 215001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215001
100.
100. S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, G. Vieux, X. Yang, R. C. Issac, S. M. Wiggins, G. H. Welsh, M.-P. Anania, D. Maneuski, R. Montgomery, G. Smith, M. Hoek, D. J. Hamilton, N. R. C. Lemos, D. Symes, P. P. Rajeev, V. O. Shea, J. M. Dias, and D. A. Jaroszynski, Nat. Phys. 7, 867 (2011).
http://dx.doi.org/10.1038/nphys2090
101.
101. A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Svert, J. M. Mikhailova, F. Krausz, M. C. Kaluza, and L. Veisz, Nat. Phys. 7, 543 (2011).
http://dx.doi.org/10.1038/nphys1942
102.
102. M. C. Kaluza, H.-P. Schlenvoigt, S. P. D. Mangles, A. G. R. Thomas, A. E. Dangor, H. Schwoerer, W. B. Mori, Z. Najmudin, and K. M. Krushelnick, Phys. Rev. Lett. 105, 115002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.115002
103.
103. Y. Glinec, J. Faure, A. Norlin, A. Pukhov, and V. Malka, Phys. Rev. Lett. 98, 194801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.194801
104.
104. Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, Phys. Rev. Lett. 94, 025003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.025003
105.
105. A. Ben-Ismail, O. Lundh, C. Rechatin, J. K. Lim, J. Faure, S. Corde, and V. Malka, Appl. Phys. Lett. 98, 264101 (2011).
http://dx.doi.org/10.1063/1.3604013
106.
106. Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanowski, and U. Oelfke, Med. Phys. 33, 155 (2006).
http://dx.doi.org/10.1118/1.2140115
107.
107. T. Fuchs, H. Szymanowski, U. Oelfke, Y. Glinec, C. Rechatin, J. Faure, and V. Malka, Phys. Med. Biol. 54, 3315 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/003
108.
108. B. Brozek-Pluska, D. Gliger, A. Hallou, V. Malka, and Y. A. Gauduel, Radiat. Chem. 72, 149 (2005).
http://dx.doi.org/10.1016/j.radphyschem.2004.06.014
109.
109. Y. Gauduel, Y. Glinec, J.-P. Rousseau, F. Burgy, and V. Malka, Eur. Phys. J. D 60, 121 (2010).
http://dx.doi.org/10.1140/epjd/e2010-00152-2
110.
110. V. Malka, J. Faure, and Y. A. Gauduel, Mutat. Res. 704, 142 (2010).
http://dx.doi.org/10.1016/j.mrrev.2010.01.006
111.
111. O. Rigaud, N. O. Fortunel, P. Vaigot, E. Cadio, M. T. Martin, O. Lundh, J. Faure, C. Rechatin, V. Malka, and Y. A. Gauduel, Cell Death Dis. 1, e73 (2010).
http://dx.doi.org/10.1038/cddis.2010.46
112.
112. V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, and K. Phuoc, Nat. Phys. 4, 447 (2008).
http://dx.doi.org/10.1038/nphys966
113.
113. K. Krushelnick and V. Malka, Laser Photonics 4(1), 42 (2010).
http://dx.doi.org/10.1002/lpor.200810062
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3695389
Loading
/content/aip/journal/pop/19/5/10.1063/1.3695389
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/5/10.1063/1.3695389
2012-04-05
2015-09-05

Abstract

This review article highlights the tremendous evolution of the research on laser plasmaaccelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/5/1.3695389.html;jsessionid=myc4iflloj6g.x-aip-live-06?itemId=/content/aip/journal/pop/19/5/10.1063/1.3695389&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser plasma acceleratorsa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3695389
10.1063/1.3695389
SEARCH_EXPAND_ITEM