1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Theory of tokamak disruptionsa)
a)Paper UT3 1, Bull. Am. Phys. Soc. , 323 (2011).
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/5/10.1063/1.3703327
1.
1. ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors, Nucl. Fusion 39, 2251 (1999).
http://dx.doi.org/10.1088/0029-5515/39/12/303
2.
2. T. C. Hender, J. C Wesley, J. Bialek, A. Bondeson, A. H. Boozer, R. J. Buttery, A. Garofalo, T. P. Goodman, R. S. Granetz, Y. Gribov, O. Gruber, M. Gryaznevich, G. Giruzzi, S. Gunter, N. Hayashi, P. Helander, C. C. Hegna, D. F. Howell, D. A. Humphreys, G. T. A. Huysmans, A. W. Hyatt, A. Isayama, S. C. Jardin, Y. Kawano, A. Kellman, C. Kessel, H. R. Koslowski, R. J. La Haye, E. Lazzaro, Y. Q. Liu, V. Lukash, J. Manickam, S. Medvedev, V. Mertens, S. V. Mirnov, Y. Nakamura, G. Navratil, M. Okabayashi, T. Ozeki, R. Paccagnella, G. Pautasso, F. Porcelli, V. D. Pustovitov, V. Riccardo, M. Sato, O. Sauter, M. J. Schaffer, M. Shimada, P. Sonato, E. J. Strait, M. Sugihara, M. Takechi, A. D. Turnbull, E. Westerhof, D. G. Whyte, R. Yoshino, H. Zohm, and the ITPA MHD, Disruption and Magnetic Control Topical Group, Nucl. Fusion 47, S128S202 (2007).
http://dx.doi.org/10.1088/0029-5515/47/6/S03
3.
3. R. O. Sayer, Y. -K. M.M. Peng, S. C. Jardin, A. G. Kellman, and J. C. Wesley, Nucl. Fusion 33, 969 (1993).
http://dx.doi.org/10.1088/0029-5515/33/7/I01
4.
4. I. Bandyopadhyay, S. Gerhardt, S. C. Jardin, R. O. Sayer, Y. Nakamura, S. Miyamoto, G. Pautasso, M. Sugihara, and the ASDEX Upgrade and NSTX Teams, TSC Modelling of Major Disruption and VDE Events in NSTX and ASDEX-Upgrade and Predictions for ITER, poster ITR/P1-16 at the IAEA Fusion Energy Conference, Daejon, Korea, 10--16 October 2010.
5.
5. M. Sugihara, M. Shimada, H. Fujieda, Y. Gribov, K. Ioki, Y. Kawano, R. Khayrutdinov, V. Lukash, and J. Ohmori, Nucl. Fusion 47, 337 (2007).
http://dx.doi.org/10.1088/0029-5515/47/4/012
6.
6. R. Paccagnella, H. R. Strauss, and J. Breslau, Nucl. Fusion 49, 035003 (2009).
http://dx.doi.org/10.1088/0029-5515/49/3/035003
7.
7. H. R. Strauss, R. Paccagnella, and J. Breslau, Phys. Plasmas 17, 082505 (2010).
http://dx.doi.org/10.1063/1.3474922
8.
8. S. E. Kruger, D. D. Schnack, and C. R. Sovinec, Phys. Plasmas 12, 056113 (2005).
http://dx.doi.org/10.1063/1.1873872
9.
9. V.A. Izzo, Nucl. Fusion 46, 541 (2006).
http://dx.doi.org/10.1088/0029-5515/46/5/006
10.
10. V. A. Izzo, E. M. Hollmann, A. N. James, J. H. Yu, D. A. Humphreys, L. L. Lao, P. B. Parks, P. E. Sieck, J. C. Wesley, R. S. Granetz, G. M. Olynyk, and D. G. Whyte, Nucl. Fusion 51, 063032 (2011).
http://dx.doi.org/10.1088/0029-5515/51/6/063032
11.
11. L. E. Zakharov, Phys. Plasmas 15, 062507 (2008).
http://dx.doi.org/10.1063/1.2926630
12.
12. P. C. de Vries, M. F. Johnson, B. Alper, P. Buratti, T. C. Hender, H. R. Koslowski, V. Riccardo, and JET-EFDA Contributors, Nucl. Fusion 51, 053018 (2011).
http://dx.doi.org/10.1088/0029-5515/51/5/053018
13.
13. J. Wesson, Tokamaks, 3rd ed. (Oxford University Press, New York, 2004).
14.
14. B. V. Chirikov, At. Energ. 6, 630 (1959) (in Russian);
14. B. V. Chirikov, J. Nucl. Energy, Part C 1, 253 (1960) (in English).
http://dx.doi.org/10.1088/0368-3281/1/4/311
15.
15. H. P. Furth, P. H. Rutherford, and H. Selberg, Phys. Fluids 16, 1054 (1973).
http://dx.doi.org/10.1063/1.1694467
16.
16. C. Z. Cheng, H. P. Furth, and A. H. Boozer, Plasma Phys. Controlled Fusion 29, 351366 (1987).
http://dx.doi.org/10.1088/0741-3335/29/3/006
17.
17. A. Reiman and H. Greenside, Comput. Phys. Commun. 43, 157 (1986).
http://dx.doi.org/10.1016/0010-4655(86)90059-7
18.
18. S. P. Hirshman, R. Sanchez, and C. R. Cook, Phys. Plasmas 18, 062504 (2011).
http://dx.doi.org/10.1063/1.3597155
19.
19. M. Greenwald, Plasma Phys. Controlled Fusion 44, R27 (2002).
http://dx.doi.org/10.1088/0741-3335/44/8/201
20.
20. A. H. Glasser, J. M. Greene, and J. L. Johnson, Phys. Fluids 18, 875 (1975).
http://dx.doi.org/10.1063/1.861224
21.
21. A. H. Boozer, Phys. Fluids 24, 1999 (1981).
http://dx.doi.org/10.1063/1.863297
22.
22. A. H. Boozer, Rev. Mod. Phys. 76, 1071 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.1071
23.
23. A. H. Boozer, Phys. Fluids 31, 591 (1988).
http://dx.doi.org/10.1063/1.866841
24.
24. W. X. Qu and J. D. Callen, “ Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak,” University of Wisconsin Report No. UWPR 85-5, October 1985.
25.
25. R. Carrera, R. Hazeltine, and M. Kotschenreuther, Phys. Fluids 29, 899 (1986).
http://dx.doi.org/10.1063/1.865682
26.
26. R. J. La Haye, R. Prater, R. J. Buttery, N. Hayashi, A. Isayama, M. E. Maraschek, L. Urso, and H. Zohm, Nucl. Fusion 46, 451 (2006).
http://dx.doi.org/10.1088/0029-5515/46/4/006
27.
27. A. Stäbler, K. McCormick, V. Mertens, E. R. Müller, J. Neuhauser, H. Niedermeyer, K.-H. Steuer, H. Zohm, F. Dollinger, A. Eberhagen, G. Fussmann, O. Gehre, J. Gernhardt, T. Hartinger, J. V. Hofmann, E. Kakoulidis, M. Kaufmann, G. Kyriakakis, R. S. Lang, H. D. Murmann, W. Poschenrieder, F. Ryter, W. Sandmann, U. Schneider, G. Siller, F. X. Soldner, N. Tsois, O. Vollmer, and F. Wagner, Nucl. Fusion 32, 1557 (1992).
http://dx.doi.org/10.1088/0029-5515/32/9/I05
28.
28. S. Mao and F. Volpe (private communication, 2011).
29.
29. R. Fitzpatrick and T. C. Hender, Phys. Fluids B 3, 644 (1991).
http://dx.doi.org/10.1063/1.859863
30.
30. F. L. Waelbroeck, Phys. Plasmas 10, 4040 (2003).
http://dx.doi.org/10.1063/1.1607324
31.
31. A. J. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006).
http://dx.doi.org/10.1063/1.2178167
32.
32. A. H. Boozer, Phys. Plasmas 16, 052505 (2009).
http://dx.doi.org/10.1063/1.3118591
33.
33. J. K. Park, A. H. Boozer, J. E. Menard, S. Gerhardt, and S. A. Sabbagh, Phys. Plasmas 16, 082512 (2009).
http://dx.doi.org/10.1063/1.3206668
34.
34. W. Zhu, S. A. Sabbagh, J. Bialek, M. Bell, B. LeBlanc, S. Kaye, F. Levinton, J. Menard, K. Shaing, A. Sontag, and H. Yuh, Phys. Rev. Lett. 96, 225002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.225002
35.
35. J.-K. Park, A. H. Boozer, J. E. Menard, and M. J. Schaffer, Nucl. Fusion 48, 045006 (2008).
http://dx.doi.org/10.1088/0029-5515/48/4/045006
36.
36. C. Kessel, J. Manikam, G. Rewoldt, and W. Tang, Phys. Rev. Lett. 72, 1212 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1212
37.
37. J. Manikam, M. Chance, S. C. Jardin, C. Kessel, D. Monticello, N. Pomphrey, A. Reiman, C. Wang, and L. E. Zakharov, Phys. Plasmas 1, 1601 (1994).
http://dx.doi.org/10.1063/1.870660
38.
38. A. D. Turnbull, T. S. Taylor, Y. R. Lin-Liu, and H. St. John, Phys. Rev. Lett. 74, 718 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.718
39.
39. H. Zohm, G. Gantenbein, A. Isayama, A. Keller, R. J. La Haye, M. Maraschek, A. Mück, K. Nagasaki, S. D. Pinches, and E. J. Strait, Plasma Phys. Controlled Fusion 45(12A ), A163 (2003).
http://dx.doi.org/10.1088/0741-3335/45/12A/012
40.
40. J. Manikam, A. Boozer, and S. Gerhardt, “Kink dynamics and halo currents during VDE’s,” Phys. Plasmas (submitted).
41.
41. A. H. Boozer, Phys. Plasmas 16, 058102 (2009).
http://dx.doi.org/10.1063/1.3099330
42.
42. L. P. Ku and A. H. Boozer, Phys. Plasmas 16, 082506 (2009).
http://dx.doi.org/10.1063/1.3207010
43.
43. J. Nührenberg, W. Lotz, and S. Gori, “ Theory of Fusion Plasmas,” in Proceedings of the Joint Varenna-Lausanne International Workshop 1994 (Editrice Compositori, Bologna, 1994), p. 3.
44.
44. P. R. Garabedian, Phys. Plasmas 3, 2483 (1996).
http://dx.doi.org/10.1063/1.871965
45.
45. C. G. Beidler, G. Grieger, F. Herrnegger, E. Harmeyer, J. Kisslinger, W. Lotz, H. Maassberg, P. Merkel, J. Nührenberg, F. Rau, J. Sapper, F. Sardei, R. Scardovelli, A. Schluter, and H. Wobig, Fusion Technol. 19, 148 (1990).
46.
46. M. Hirsch, J. Baldzuhn, C. Beidler, R. Brakel, R. Burhenn, A. Dinklage, E. Ehmler, M. Endler, V. Erckmann, Y. Feng, J. Geiger, L. Giannone, G. Grieger, P. Grigull, H. J. Hartfuss, D. Hartmann, R. Jaenicke, R. Konig, H. P. Laqua, H. Maassberg, K. McCormick, F. Sardei, E. Speth, U. Stroth, F. Wagner, A. Weller, A. Werner, H. Wobig, and S. Zoletnik, Plasma Phys. Controlled Fusion 50, 053001 (2008).
http://dx.doi.org/10.1088/0741-3335/50/5/053001
47.
47. A. Komori, T. Morisaki, T. Mutoh, S. Sakakibara, Y. Takeiri, R. Kumazawa, S. Kubo, K. Ida, S. Morita, K. Narihara, T. Shimozuma, K. Tanaka, K. Y. Watanabe, H. Yamada, M. Yoshinuma, T. Akiyama, N. Ashikawa, M. Emoto, H. Funaba, M. Goto, T. Ido, K. Ikeda, S. Inagaki, M. Isobe, H. Igami, K. Itoh, O. Kaneko, K. Kawahata, T. Kobuchi, S. Masuzaki, K. Matsuoka, T. Minami, J. Miyazawa, S. Muto, Y. Nagayama, Y. Nakamura, H. Nakanishi, Y. Narushima, K. Nishimura, M. Nishiura, A. Nishizawa, N. Noda, S. Ohdachi, Y. Oka, M. Osakabe, N. Ohyabu, T. Ozaki, B. J. Peterson, A. Sagara, K. Saito, N. Tamura, K. Toi, T. Tokuzawa, K. Tsumori, T. Uda, T. Watari, I. Yamada, M. Yokoyama, Y. Yoshimura, O. Motojima, C. D. Beidler, T. Fujita, A. Isayama, Y. Sakamoto, H. Takenaga, P. Goncharov, K. Ishii, M. Sakamoto, S. Murakami, T. Notake, N. Takeuchi, S. Okajima, and M. Sasao, Fusion Sci. Technol. 50, 136 (2006).
48.
48. J. K. Park, A. H. Boozer, and A. H. Glasser, Phys. Plasmas 14, 052110 (2007).
http://dx.doi.org/10.1063/1.2732170
49.
49. O. Betancourt, Commun. Pure Appl. Math. 41, 551 (1988).
http://dx.doi.org/10.1002/cpa.3160410504
50.
50. S. P. Hirshman, W. I. van Rij, and P. Merkel, Comput. Phys. Commun. 43, 143 (1986).
http://dx.doi.org/10.1016/0010-4655(86)90058-5
51.
51. S. R. Hudson, R. L. Dewar, M. J. Hole, and M. McGann, Plasma Phys. Controlled Fusion 54, 014005 (2012).
http://dx.doi.org/10.1088/0741-3335/54/1/014005
52.
52. Y. Suzuki, Y. Nakamura, K. Kondo, T. Hyashi, S. S. Lloyd, and H. J. Gardner, Plasma Phys. Controlled Fusion 45, 971 (2003).
http://dx.doi.org/10.1088/0741-3335/45/6/310
53.
53. F. L. Waelbroeck, Phys. Rev. Lett. 70, 3259 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3259
54.
54. R. J. La Haye, Phys. Plasmas 13, 055501 (2006).
http://dx.doi.org/10.1063/1.2180747
55.
55. N. F. Loureiro, S. C. Cowley, W. D. Dorland, M. G. Haines, and A. A. Schekochihin, Phys. Rev. Lett. 95, 235003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.235003
56.
56. A. N. Simakov, L. Chacoń, and A. Zocco, Phys. Plasma 17, 060701 (2010).
http://dx.doi.org/10.1063/1.3449589
57.
57. P. Ricci, J. U. Brackbill, W. Daughton, and G. Lapenta, Phys. Plasmas 11, 4102 (2004).
http://dx.doi.org/10.1063/1.1768552
58.
58. J. F. Drake, M. Swisdak, K. M. Schoeffler, B. N. Rogers, and S. Kobayashi, Geophys. Res. Lett. 33, L13105, doi:10.1029/2006GL025957 (2006).
http://dx.doi.org/10.1029/2006GL025957
59.
59. P. Merkel, Nucl. Fusion 27, 867 (1987).
http://dx.doi.org/10.1088/0029-5515/27/5/018
60.
60. J. Bialek, A. H. Boozer, M. E. Mauel, and G. A. Navratil, Phys. Plasmas 8, 2170 (2001).
http://dx.doi.org/10.1063/1.1362532
61.
61. R. Albanese and G. Rubinacci in Advances in Imaging and Electron Physics, edited by Peter W. Hawkes (Academic Press, 1998), Vol. 102, pp. 186.
62.
62. L. E. Zakharov, Phys. Plasmas 17, 124703 (2010).
http://dx.doi.org/10.1063/1.3522759
63.
63. L. E. Zakharov, Phys. Plasmas 18, 062503 (2011).
http://dx.doi.org/10.1063/1.3596536
64.
64. A. H. Boozer, Plasma Phys. Controlled Fusion 52, 124002 (2010).
http://dx.doi.org/10.1088/0741-3335/52/12/124002
65.
65. J. D. Callen, C. C. Hegna, B. W. Rice, E. J. Strait, and A. D. Turnbull, Phys. Plasmas 6, 2963 (1999).
http://dx.doi.org/10.1063/1.873583
66.
66. T. E. Evans, A. G. Kellman, D. A. Humphreys, M. J. Schaffer, P. L. Taylor, D. G. Whyte, T. C. Jernigan, A. W. Hyatt, and R. L. Lee, J. Nucl. Mater. 241–243, 606 (1997).
http://dx.doi.org/10.1016 S0022-3115(97)80107-9
67.
67. G. Pautasso, Y. Zhang, B. Reiter, L. Giannone, O. Gruber, A. Herrmann, O. Kardaun, K. K. Khayrutdinov, V. E. Lukash, M. Maraschek, A. Mlynek, Y. Nakamura, W. Schneider, G. Sias, M. Sugihara, and the ASDEX Upgrade Team, Nucl. Fusion 51, 103009 (2011).
http://dx.doi.org/10.1088/0029-5515/51/10/103009
68.
68. D. A. Humphreys and D. G. Whyte, Phys. Plasmas 7, 4057 (2000).
http://dx.doi.org/10.1063/1.1288679
69.
69. V. Riccardo, G. Arnoux, P. Beaumont, S. Hacquin, J. Hobirk, D. Howell, A. Huber, E. Joffrin, R. Koslowski, N. Lam, H. Leggate, E. Rachlew, G. Sergienko, A. Stephen, T. Todd, M. Zerbini, R. Delogu, L. Grando, D. Marcuzzi, S. Peruzzo, N. Pomaro, P. Sonato, and JET EFDA Contributors, Nucl. Fusion 49, 055012 (2009).
http://dx.doi.org/10.1088/0029-5515/49/5/055012
70.
70. V. Riccardo, G. Arnoux, P. Cahyna, T. C. Hender, A. Huber, S. Jachmich, V. Kiptily, R. Koslowski, L. Krlin, M. Lehnen, A. Loarte, E. Nardon, R. Paprok, D. Tskhakaya, Sr., and JET-EFDA contributors, Plasma Phys. Controlled Fusion 52, 124018 (2010).
http://dx.doi.org/10.1088/0741-3335/52/12/124018
71.
71. G. Pautasso, L. Giannone, O. Gruber, A. Herrmann, M. Maraschek, K. H. Schuhbeck, and the ASDEX Upgrade Team, Nucl. Fusion 51, 043010 (2011).
http://dx.doi.org/10.1088/0029-5515/51/4/043010
72.
72. N. W. Eidietis and D. A. Humphreys, Nucl. Fusion 51, 073034 (2011).
http://dx.doi.org/10.1088/0029-5515/51/7/073034
73.
73. D. Terranova, M. Gobbin, A. H. Boozer, S. P. Hirshman, L. Marrelli, N. Pomphrey, and the RFX-Mod Team, Contrib. Plasma Phys. 50, 775 (2010).
http://dx.doi.org/10.1002/ctpp.200900010
74.
74. W. A. Cooper, J. P. Graves, A. Pochelon, O. Sauter, and L. Villard, Phys. Rev. Lett. 105, 035003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.035003
75.
75. H. Takahashi, E. D. Fredrickson, M. J. Schaffer, M. E. Austin, T. E. Evans, L. L. Lao, and J. G. Watkins, Nucl. Fusion 44, 1075 (2004).
http://dx.doi.org/10.1088/0029-5515/44/10/003
76.
76. A. H. Boozer, “Rotation of tokamak halo currents,” Phys. Plasmas (submitted).
77.
77. E. M. Hollmann, G. Arnoux, N. Commaux, N. W. Eidietis, T. E. Evans, R. S. Granetz, A. Huber, D. A. Humphreys, V. A. Izzo, A. N. James, T. C. Jernigan, M. Lehnen, G. Maddaluno, R. Paccagnella, P. B. Parks, V. Philipps, M. L. Reinke, D. L. Rudakov, F. Saint-Laurent, V. Sizyuk, E. J. Strait, J. C. Wesley, C. P. C. Wong, and J. H. Yu, J. Nucl. Mater. 415, S27 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2010.10.009
78.
78. J. W. Connor and R. J. Hastie, Nucl. Fusion 15, 415 (1975).
http://dx.doi.org/10.1088/0029-5515/15/3/007
79.
79. R. Jayakumar, H. H. Fleischmann, and S. J. Zweben, Phys. Lett. A 172, 447 (1993).
http://dx.doi.org/10.1016/0375-9601(93)90237-T
80.
80. M. N. Rosenbluth and S. V. Putvinski, Nucl. Fusion 37, 1355 (1997).
http://dx.doi.org/10.1088/0029-5515/37/10/I03
81.
81. C. Møller, Ann. Phys. 14, 531 (1932).
http://dx.doi.org/10.1002/andp.19324060506
82.
82. A. Ashkin, L. A. Page, and W. M. Woodward, Phys. Rev. 94, 357 (1954).
http://dx.doi.org/10.1103/PhysRev.94.357
83.
83. L. Woltjer, Proc. Natl. Acad. Sci. U.S.A. 44, 489 (1958).
http://dx.doi.org/10.1073/pnas.44.6.489
84.
84. M. A. Berger, Geophys. Astrophys. Fluid Dyn. 30, 79 (1984).
http://dx.doi.org/10.1080/03091928408210078
85.
85. J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.1139
86.
86. A. Loarte, V. Riccardo, J. R. Martin-Sols, J. Paley, A. Huber, M. Lehnen, and JET EFDA Contributors, Nucl. Fusion 51, 073004 (2011).
http://dx.doi.org/10.1088/0029-5515/51/7/073004
87.
87. L.-G. Eriksson, P. Helander, F. Andersson, D. Anderson, and M. Lisak, Phys. Rev. Lett. 92, 205004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.205004
88.
88. M. Bakhtiari, G. Olynyk, R. Granetz, D. G. Whyte, M. L. Reinke, K. Zhurovich, and V. Izzo, Nucl. Fusion 51, 063007 (2011).
http://dx.doi.org/10.1088/0029-5515/51/6/063007
89.
89. C. M. Greenfield and the DIII-D Team, Nucl. Fusion 51, 094009 (2011).
http://dx.doi.org/10.1088/0029-5515/51/9/094009
90.
90. F. Romanelli, M. Laxaback, F. Durodie, L. Horton, M. Lehnen, A. Murari, F. Rimini, G. Sips, K.-D. Zastrow, and JET EFDA contributors, Fusion Eng. Design 86, 459 (2011).
http://dx.doi.org/10.1016/j.fusengdes.2011.02.059
91.
91. E. M. Hollmann, P. B. Parks, D. A. Humphreys, N. H. Brooks, N. Commaux, N. Eidietis, T. E. Evans, R. Isler, A. N. James, T. C. Jernigan, J. Munoz, E. J. Strait, C. Tsui, J. Wesley, and J. H. Yu, Nucl. Fusion 51, 103026 (2011).
http://dx.doi.org/10.1088/0029-5515/51/10/103026
92.
92. P. Helander, L.-G. Ericksson, and F. Andersson, Phys. Plasmas 7, 4106 (2000).
http://dx.doi.org/10.1063/1.1289892
93.
93. R. Yoshino and S. Tokuda, Nucl. Fusion 40, 1293 (2000).
http://dx.doi.org/10.1088/0029-5515/40/7/302
94.
94. A. H. Boozer, Plasma Phys. Controlled Fusion 53, 084002 (2011).
http://dx.doi.org/10.1088/0741-3335/53/8/084002
95.
95. J. M. Greene, J. Math. Phys. 20, 1183 (1979).
http://dx.doi.org/10.1063/1.524170
96.
96. B. D. Wirth, K. Nordlund, D. G. Whyte, and D. Xu, MRS Bull. 36, 216 (2011).
http://dx.doi.org/10.1557/mrs.2011.37
97.
97. S. Krasheninnikov, Plasma Phys. Controlled Fusion 53, 074017 (2011).
http://dx.doi.org/10.1088/0741-3335/53/7/074017
98.
98. A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chu, D. D. Schnack, and the NIMROD Team, Plasma Phys. Controlled Fusion 41, A747 (1999).
http://dx.doi.org/10.1088/0741-3335/41/3A/067
99.
99. W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama, Phys. Plasmas 6, 1796 (1999).
http://dx.doi.org/10.1063/1.873437
100.
100. R. B. White, D. A. Monticello, and M. N. Rosenbluth, Phys. Rev. Lett. 39, 1618 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.1618
101.
101. B. V. Waddell, B. Carreras, H. R. Hicks, J. A. Holmes, and D. K. Lee, Phys. Rev. Lett. 41, 1386 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1386
102.
102. S. C. Jardin, N. Ferraro, X. Luo, J. Chen, J. Breslau, K. E. Jansen, and M. S. Shepard, J. Phys.: Conf. Ser. 125, 012044 (2008).
http://dx.doi.org/10.1088/1742-6596/125/1/012044
103.
103. R. S. Granetz, I. H. Hutchinson, J. Sorci, J. H. Irby, B. LaBombard, and D. Gwinn, Nucl. Fusion 36, 545 (1996).
http://dx.doi.org/10.1088/0029-5515/36/5/I02
104.
104. F. Miltello, M. Ottavianni, and F. Porcelli, Phys. Plasmas 15, 042104 (2008).
http://dx.doi.org/10.1063/1.2901193
105.
105. P. H. Rutherford, Phys. Fluids 16, 1903 (1973).
http://dx.doi.org/10.1063/1.1694232
106.
106. A. H. Boozer, Phys. Fluids 27, 2055 (1984).
http://dx.doi.org/10.1063/1.864863
107.
107. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
http://dx.doi.org/10.1063/1.1706761
108.
108. A. H. Boozer and N. Pomphrey, Phys. Plasmas 17, 110707 (2010).
http://dx.doi.org/10.1063/1.3507307
109.
109. R. Chodura, Phys. Fluids 25, 1628 (1982).
http://dx.doi.org/10.1063/1.863955
110.
110. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institute of Physics, Philadelphia, 2000).
111.
111. S. Gerhardt (private communication, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3703327
Loading
/content/aip/journal/pop/19/5/10.1063/1.3703327
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/5/10.1063/1.3703327
2012-04-20
2014-11-23

Abstract

Theoretical guidance is needed on two disruption questions: (1) When is a tokamak operating in a metastable state in which loss of control is credible (avoidance question)? (2) What is the worst credible level of destructive effects when plasma control lost and how can these effects be mitigated (effects question)? The success of ITER and the future of tokamaks as fusion systems depend on the precision with which these questions can be answered. Existing capabilities are far from those desired. Nevertheless, one can give physical constraints on the answers and scientific issues that must be addressed to provide reliable guidance. A theoretical program of moderate scale interacting with ongoing experiments could greatly advance the state of development of appropriate tools for simulating, avoiding, and mitigating disruptions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/5/1.3703327.html;jsessionid=6i8aeinu7n06.x-aip-live-03?itemId=/content/aip/journal/pop/19/5/10.1063/1.3703327&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theory of tokamak disruptionsa)
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.3703327
10.1063/1.3703327
SEARCH_EXPAND_ITEM