1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Acceleration of cone-produced electrons by double-line Ti-sapphire laser beating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/5/10.1063/1.4707390
1.
1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 207 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
2.
2. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai, Phys. Rev. Lett. 68, 48 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.48
3.
3. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lai, W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett. 70, 37 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.37
4.
4. S. Ya. Tochitsky, R. Narang, C. V. Filip, P. Miisumeci, C. E. Ciayton, R. B. Yoder, K. A. March, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, Phys. Rev. Lett. 92, 095004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.095004
5.
5. Y. Kitagawa, Y. Sentoku, S. Akamatsu, W. Sakamoto, R. Kodama, K. A. Tanaka, K. Azumi, T. Norimatsu, T. Matuoka, H. Fujita, and H. Yoshida, Phys. Rev. Lett. 92, 205002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.205002
6.
6. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey. C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 690 (2006).
http://dx.doi.org/10.1038/nphys418
7.
7. K. Nakamura, B. Nagler, Cs. Tóth, C. G. R. Geddes, C. B. Schroeder, E. Esarey, A. J. Gonsalves, S. M. Hooker, and W. P. Leemans, Phys. Plasmas 14, 056708 (2007).
http://dx.doi.org/10.1063/1.2718524
8.
8. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).
http://dx.doi.org/10.1007/s003400200795
9.
9. W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.165002
10.
10. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4205
11.
11. B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045001
12.
12. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
http://dx.doi.org/10.1038/nature05393
13.
13. C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.215004
14.
14. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).
http://dx.doi.org/10.1063/1.3469581
15.
15. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025003
16.
16. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka,V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025004
17.
17. Y. Mori, S. Fukumochi, Y. Hama, K. Kondo, Y. Sentoku, and Y. Kitagawa, Int. J. Mod. Phys. B 21, 572 (2007).
http://dx.doi.org/10.1142/S0217979207042379
18.
18. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka, Opt. Lett. 28, 257 (2003).
http://dx.doi.org/10.1364/OL.28.000257
19.
19. Y. Mori, H. Kuwabara, K. Ishii, R. Hanayama, T. Kawashima, and Y. Kitagawa, Appl. Phys. Express 5, 056401 (2012).
http://dx.doi.org/10.1143/APEX.5.056401
20.
20. R. E. Slusher and C. M. Surko, Phys. Fluid 23, 472 (1980).
http://dx.doi.org/10.1063/1.863016
21.
21. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, Phys. Plasmas 11, 3083 (2004).
http://dx.doi.org/10.1063/1.1735734
22.
22. Y. Mori, Y. Sentoku, K. Kondo, K. Tsuji, N. Nakanii, S. Fukumochi, M. Kashihara, K. Kimura, K. Takeda, K. A. Tanaka, T. Norimatsu, T. Tanimoto, H. Nakamura, M. Tampo, R. Kodama, E. Miura, K. Mima, and Y. Kitagawa, Phys. Plasmas 16, 123103 (2009).
http://dx.doi.org/10.1063/1.3271152
23.
23. K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, and S. Okuda, Rev. Sci. Instrum. 76, 013507 (2005).
http://dx.doi.org/10.1063/1.1824371
24.
24. N. A. Ebrahim and S. R. Douglas, Laser Part. Beams 13, 147 (1995).
http://dx.doi.org/10.1017/S0263034600008910
25.
25. S. C. Wilks, Phys. Fluids B 5, 2603 (1993).
http://dx.doi.org/10.1063/1.860697
26.
26. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Malka, Opt. Lett. 27, 2203 (2002).
http://dx.doi.org/10.1364/OL.27.002203
27.
27. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Maika, Phys. Plasmas 13, 013103 (2008).
http://dx.doi.org/10.1063/1.2160517
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.4707390
Loading
/content/aip/journal/pop/19/5/10.1063/1.4707390
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/5/10.1063/1.4707390
2012-05-16
2014-10-22

Abstract

Acceleration of electrons is demonstrated in a beat wave scheme by using a prepulse-free short-pulse (150 fs) double-line Ti-sapphire laser. To inject electrons, we used a hybrid target composed of a cone-drilled plate and a gas jet, where the cone-produced electrons were accelerated via the forced plasma wave excited in the gas jet that was situated behind the plate. This resulted in an increase in slope temperature from 0.05 to 0.15 MeV. We find a correlation between the slope temperature and forced relativistic plasmawave. The wake amplitude is 15 GV/m at the resonant density of in a hydrogen plasma. The wake acceleration models can explain the increase in slope temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/5/1.4707390.html;jsessionid=wdd2tufi6fbf.x-aip-live-06?itemId=/content/aip/journal/pop/19/5/10.1063/1.4707390&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Acceleration of cone-produced electrons by double-line Ti-sapphire laser beating
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.4707390
10.1063/1.4707390
SEARCH_EXPAND_ITEM