Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 207 (1979).
2. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai, Phys. Rev. Lett. 68, 48 (1992).
3. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lai, W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett. 70, 37 (1993).
4. S. Ya. Tochitsky, R. Narang, C. V. Filip, P. Miisumeci, C. E. Ciayton, R. B. Yoder, K. A. March, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, Phys. Rev. Lett. 92, 095004 (2004).
5. Y. Kitagawa, Y. Sentoku, S. Akamatsu, W. Sakamoto, R. Kodama, K. A. Tanaka, K. Azumi, T. Norimatsu, T. Matuoka, H. Fujita, and H. Yoshida, Phys. Rev. Lett. 92, 205002 (2004).
6. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey. C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 690 (2006).
7. K. Nakamura, B. Nagler, Cs. Tóth, C. G. R. Geddes, C. B. Schroeder, E. Esarey, A. J. Gonsalves, S. M. Hooker, and W. P. Leemans, Phys. Plasmas 14, 056708 (2007).
8. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).
9. W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006).
10. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997).
11. B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
12. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
13. C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
14. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).
15. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
16. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka,V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
17. Y. Mori, S. Fukumochi, Y. Hama, K. Kondo, Y. Sentoku, and Y. Kitagawa, Int. J. Mod. Phys. B 21, 572 (2007).
18. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka, Opt. Lett. 28, 257 (2003).
19. Y. Mori, H. Kuwabara, K. Ishii, R. Hanayama, T. Kawashima, and Y. Kitagawa, Appl. Phys. Express 5, 056401 (2012).
20. R. E. Slusher and C. M. Surko, Phys. Fluid 23, 472 (1980).
21. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, Phys. Plasmas 11, 3083 (2004).
22. Y. Mori, Y. Sentoku, K. Kondo, K. Tsuji, N. Nakanii, S. Fukumochi, M. Kashihara, K. Kimura, K. Takeda, K. A. Tanaka, T. Norimatsu, T. Tanimoto, H. Nakamura, M. Tampo, R. Kodama, E. Miura, K. Mima, and Y. Kitagawa, Phys. Plasmas 16, 123103 (2009).
23. K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, and S. Okuda, Rev. Sci. Instrum. 76, 013507 (2005).
24. N. A. Ebrahim and S. R. Douglas, Laser Part. Beams 13, 147 (1995).
25. S. C. Wilks, Phys. Fluids B 5, 2603 (1993).
26. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Malka, Opt. Lett. 27, 2203 (2002).
27. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Maika, Phys. Plasmas 13, 013103 (2008).

Data & Media loading...


Article metrics loading...



Acceleration of electrons is demonstrated in a beat wave scheme by using a prepulse-free short-pulse (150 fs) double-line Ti-sapphire laser. To inject electrons, we used a hybrid target composed of a cone-drilled plate and a gas jet, where the cone-produced electrons were accelerated via the forced plasma wave excited in the gas jet that was situated behind the plate. This resulted in an increase in slope temperature from 0.05 to 0.15 MeV. We find a correlation between the slope temperature and forced relativistic plasmawave. The wake amplitude is 15 GV/m at the resonant density of in a hydrogen plasma. The wake acceleration models can explain the increase in slope temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd