1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Acceleration of cone-produced electrons by double-line Ti-sapphire laser beating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/5/10.1063/1.4707390
1.
1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 207 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.267
2.
2. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai, Phys. Rev. Lett. 68, 48 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.48
3.
3. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lai, W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett. 70, 37 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.37
4.
4. S. Ya. Tochitsky, R. Narang, C. V. Filip, P. Miisumeci, C. E. Ciayton, R. B. Yoder, K. A. March, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, Phys. Rev. Lett. 92, 095004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.095004
5.
5. Y. Kitagawa, Y. Sentoku, S. Akamatsu, W. Sakamoto, R. Kodama, K. A. Tanaka, K. Azumi, T. Norimatsu, T. Matuoka, H. Fujita, and H. Yoshida, Phys. Rev. Lett. 92, 205002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.205002
6.
6. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey. C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 690 (2006).
http://dx.doi.org/10.1038/nphys418
7.
7. K. Nakamura, B. Nagler, Cs. Tóth, C. G. R. Geddes, C. B. Schroeder, E. Esarey, A. J. Gonsalves, S. M. Hooker, and W. P. Leemans, Phys. Plasmas 14, 056708 (2007).
http://dx.doi.org/10.1063/1.2718524
8.
8. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).
http://dx.doi.org/10.1007/s003400200795
9.
9. W. Lu, C. Huang, M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Rev. Lett. 96, 165002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.165002
10.
10. S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4205
11.
11. B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula, Phys. Rev. Lett. 107, 045001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045001
12.
12. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature 444, 737 (2006).
http://dx.doi.org/10.1038/nature05393
13.
13. C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey, C. B. Schroeder, J. R. Cary, and W. P. Leemans, Phys. Rev. Lett. 100, 215004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.215004
14.
14. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).
http://dx.doi.org/10.1063/1.3469581
15.
15. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Phys. Rev. Lett. 104, 025003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025003
16.
16. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka,V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.025004
17.
17. Y. Mori, S. Fukumochi, Y. Hama, K. Kondo, Y. Sentoku, and Y. Kitagawa, Int. J. Mod. Phys. B 21, 572 (2007).
http://dx.doi.org/10.1142/S0217979207042379
18.
18. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka, Opt. Lett. 28, 257 (2003).
http://dx.doi.org/10.1364/OL.28.000257
19.
19. Y. Mori, H. Kuwabara, K. Ishii, R. Hanayama, T. Kawashima, and Y. Kitagawa, Appl. Phys. Express 5, 056401 (2012).
http://dx.doi.org/10.1143/APEX.5.056401
20.
20. R. E. Slusher and C. M. Surko, Phys. Fluid 23, 472 (1980).
http://dx.doi.org/10.1063/1.863016
21.
21. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, Phys. Plasmas 11, 3083 (2004).
http://dx.doi.org/10.1063/1.1735734
22.
22. Y. Mori, Y. Sentoku, K. Kondo, K. Tsuji, N. Nakanii, S. Fukumochi, M. Kashihara, K. Kimura, K. Takeda, K. A. Tanaka, T. Norimatsu, T. Tanimoto, H. Nakamura, M. Tampo, R. Kodama, E. Miura, K. Mima, and Y. Kitagawa, Phys. Plasmas 16, 123103 (2009).
http://dx.doi.org/10.1063/1.3271152
23.
23. K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, and S. Okuda, Rev. Sci. Instrum. 76, 013507 (2005).
http://dx.doi.org/10.1063/1.1824371
24.
24. N. A. Ebrahim and S. R. Douglas, Laser Part. Beams 13, 147 (1995).
http://dx.doi.org/10.1017/S0263034600008910
25.
25. S. C. Wilks, Phys. Fluids B 5, 2603 (1993).
http://dx.doi.org/10.1063/1.860697
26.
26. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Malka, Opt. Lett. 27, 2203 (2002).
http://dx.doi.org/10.1364/OL.27.002203
27.
27. B. Walton, Z. Najmudin, M. S. Wei, C. Marle, R. J. Kingham, K. Krushelnick, A. E. Dangor, R. J. Clarke, M. J. Poulter, C. Hernandez-Gomez, S. Hawkes, D. Neely, J. L. Collier, C. N. Danson, S. Fritzler, and V. Maika, Phys. Plasmas 13, 013103 (2008).
http://dx.doi.org/10.1063/1.2160517
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.4707390
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematics of BEAT laser and provided pulse shape and spectrum for “single-line” and “double-line” operations.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Second-order autocorrelation image (upper) and trace (bottom) of the double-line (785 and 815 nm) laser. The full width half maximum is 150 fs and . (b) Laser spectrum.

Image of FIG. 3.

Click to view

FIG. 3.

Experimental setup for beat wave electron acceleration: (a) overview, (b) magnification of the hybrid target, combining an Al plate and a hydrogen-gas jet.

Image of FIG. 4.

Click to view

FIG. 4.

Electron density profile along the laser irradiation direction. The backing pressure is 10 atm.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Variation of normalized sideband intensities versus backing pressure P or normalized electron density (solid circles). (b) Sideband peak spectrum intensity scattered around 845 nm: . (c) Variation of wave amplitude versus P or (solid circles).

Image of FIG. 6.

Click to view

FIG. 6.

Energy distribution of electrons for plate target (blue) and hybrid target (red) under beat wave operation. The dashed-dotted curves represent , as a function of slope temperatures T e . For the gas target without the plate target, electrons are below the detection limit.

Image of FIG. 7.

Click to view

FIG. 7.

Variation of T e versus backing pressure P or normalized electron density under beat wave (solid circles) and single-line (open circles) operation with a hybrid target.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Variation of slope temperature versus normalized sideband intensities under beat wave operation. (b) against wave amplitude under beat wave operation. The solid curve is from a theory that assumes that electrons absorb energy from the wake during an acceleration phase.24

Loading

Article metrics loading...

/content/aip/journal/pop/19/5/10.1063/1.4707390
2012-05-16
2014-04-21

Abstract

Acceleration of electrons is demonstrated in a beat wave scheme by using a prepulse-free short-pulse (150 fs) double-line Ti-sapphire laser. To inject electrons, we used a hybrid target composed of a cone-drilled plate and a gas jet, where the cone-produced electrons were accelerated via the forced plasma wave excited in the gas jet that was situated behind the plate. This resulted in an increase in slope temperature from 0.05 to 0.15 MeV. We find a correlation between the slope temperature and forced relativistic plasmawave. The wake amplitude is 15 GV/m at the resonant density of in a hydrogen plasma. The wake acceleration models can explain the increase in slope temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/5/1.4707390.html;jsessionid=1t9issnhhx6i0.x-aip-live-06?itemId=/content/aip/journal/pop/19/5/10.1063/1.4707390&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Acceleration of cone-produced electrons by double-line Ti-sapphire laser beating
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/5/10.1063/1.4707390
10.1063/1.4707390
SEARCH_EXPAND_ITEM