1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Current sheet oscillations in the magnetic filament approach
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/6/10.1063/1.4725506
1.
1. D. J. Southwood and M. A. Saunders, Planet. Space Sci. 33, 127 (1985).
http://dx.doi.org/10.1016/0032-0633(85)90149-7
2.
2. D. Y. Klimushkin, Ann. Geophys. 16, 303 (1998).
http://dx.doi.org/10.1007/s00585-998-0303-7
3.
3. N. V. Erkaev, V. S. Semenov, V. A. Shaidurov, D. Langmayr, H. K. Biernat, and H. O. Rucker, Int. J. Geomagn. Aeron. 3, 67, (2002).
4.
4. N. V. Erkaev, V. A. Shaidurov, V. S. Semenov, and H. K. Biernat, Phys. Plasmas. 12, 012905 (2005).
http://dx.doi.org/10.1063/1.1833392
5.
5. C. X. Chen and R. A. Wolf, J. Geophys. Res. 104(A7 ), 14613, doi: 10.1029/1999JA900005 (1999).
http://dx.doi.org/10.1029/1999JA900005
6.
6. N. V. Erkaev, C. J. Farrugia, B. Harris, and H. K. Biernat, Geophys. Res. Lett. 38, L01104, doi: 10.1029/2010GL045998 (2011).
http://dx.doi.org/10.1029/2010GL045998
7.
7. T. L. Zhang, W. Baumjohann, R. Nakamura et al., Geophys. Res. Lett. 29, 1899, doi: 10.1029/2002GL015544 (2002).
http://dx.doi.org/10.1029/2002GL015544
8.
8. V. A. Sergeev, A. Runov, W. Baumjohann et al., Geophys. Res. Lett. 31, L05807, doi: 10.1029/2003GL019346 (2004).
http://dx.doi.org/10.1029/2003GL019346
9.
9. V. A. Sergeev, D. A. Sormakov, S. V. Apatenkov et al., Ann. Geophys. 24, 20152024 (2006).
http://dx.doi.org/10.5194/angeo-24-2015-2006
10.
10. A. Runov, V. A. Sergeev, W. Baumjohann et al., Ann. Geophys. 23, 1391 (2005).
http://dx.doi.org/10.5194/angeo-23-1391-2005
11.
11. A. V. Runov, A. Sergeev, R. Nakamura et al., Ann. Geophys. 24, 247 (2006).
http://dx.doi.org/10.5194/angeo-24-247-2006
12.
12. A. A. Petrukovich, T. L. Zhang et al., Ann. Geophys. 24, 1695 (2006).
http://dx.doi.org/10.5194/angeo-24-1695-2006
13.
13. C. Shen, Z. J. Rong, X. Li et al., Ann. Geophys. 26, 3525 (2008).
http://dx.doi.org/10.5194/angeo-26-3525-2008
14.
14. C. Gabrielse, V. Angelopoulos, A. Runov et al., Geophys. Res. Lett., 35, L17S13, doi: 10.1029/2008GL033664 (2008).
http://dx.doi.org/10.1029/2008GL033664
15.
15. I. V. Golovchanskaya and Y. P. Maltsev, Geophys. Res. Lett., 32, L02102, doi: 10.1029/2004GL021552 (2005).
http://dx.doi.org/10.1029/2004GL021552
16.
16. N. V. Erkaev, V. S. Semenov, I. V. Kubyshkin et al., J. Geophys. Res. 114, A03206, doi: 10.1029/2008JA013728 (2009).
http://dx.doi.org/10.1029/2008JA013728
17.
17. J. R. Kan, “ On the structure of the magnetotail current sheet,” J. Geophys. Res. 78, 3773, doi: 10.1029/JA078i019p03773 (1973).
http://dx.doi.org/10.1029/JA078i019p03773
18.
18. K. Schindler and J. Birn, J. Geophys. Res. 109, A10208, doi: 10.1029/2004JA010537 (2004).
http://dx.doi.org/10.1029/2004JA010537
19.
19. J. Birn, M. Hesse, and K. Schindler, Phys. Plasmas, 13(9 ), 092117 (2006).
http://dx.doi.org/10.1063/1.2349440
20.
20. K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, 2007), 508 p.
21.
21. N. V. Erkaev, The Solar-Wind Flow Past the Earth’s Magnetosphere (VINITI, Moscow, 1989), 131 p. (in Russian).
22.
22. A. Achterberg, Astron. Astrophys. 313, 1008 (1996).
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/6/10.1063/1.4725506
Loading
/content/aip/journal/pop/19/6/10.1063/1.4725506
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/19/6/10.1063/1.4725506
2012-06-27
2014-09-02

Abstract

Magnetic filament approach is applied for modeling of nonlinear “kink”-like flapping oscillations of thin magnetic flux tubes in the Earth’s magnetotail current sheet. A discrete approximation for the magnetic flux tube was derived on a basis of the Hamiltonian formulation of the problem. The obtained system of ordinary differential equations was integrated by method of Rosenbrock, which is suitable for stiff equations. The two-dimensional exact Kan’s solution of the Vlasov equations was used to set the background equilibrium conditions for magnetic field and plasma. Boundary conditions for the magnetic filament were found to be dependent on the ratio of the ionospheric conductivity and the Alfvén conductivity of the magnetic tube. It was shown that an enhancement of this ratio leads to the corresponding increase of the frequency of the flapping oscillations. For some special case of boundary conditions, when the magnetic perturbations vanish at the boundaries, the calculated frequency of the “kink”-like flapping oscillations is rather close to that predicted by the “double gradient” analytical model. For others cases, the obtained frequency of the flapping oscillations is somewhat larger than that from the “double gradient” theory. The frequency of the nonlinear flapping oscillations was found to be a decreasing function of the amplitude.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/6/1.4725506.html;jsessionid=e5t6kh6sl6hkp.x-aip-live-03?itemId=/content/aip/journal/pop/19/6/10.1063/1.4725506&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Current sheet oscillations in the magnetic filament approach
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/6/10.1063/1.4725506
10.1063/1.4725506
SEARCH_EXPAND_ITEM