1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasma penetration of the dayside magnetopause
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/7/10.1063/1.4739446
1.
1. S.-I. Akasofu, Space Sci. Rev. 28, 121 (1981).
http://dx.doi.org/10.1007/BF00218810
2.
2. R. C. Fear, A. N. Fazakerley, C. J. Owen, A. D. Lahiff, E. A. Lucek, A. Balogh, L. M. Kistler, C. Mouikis, and H. Rème, Ann. Geophys. 23, 2605 (2005).
http://dx.doi.org/10.5194/angeo-23-2605-2005
3.
3. C. T. Russell and R. C. Elphic, Space Sci. Rev. 22, 681 (1978).
http://dx.doi.org/10.1007/BF00212619
4.
4. C. T. Russell and R. C. Elphic, Geophys. Res. Lett. 6, 33, doi:10.1029/GL006i001p00033 (1979).
http://dx.doi.org/10.1029/GL006i001p00033
5.
5. J. T. Gosling, M. F. Thomsen, S. J. Bame, R. C. Elphic, and C. T. Russell, J. Geophys. Res. 96, 14097, doi:10.1029/91JA01139 (1991).
http://dx.doi.org/10.1029/91JA01139
6.
6. P. Song and C. T. Russell, J. Geophys. Res. 97, 1411, doi:10.1029/91JA02377 (1992).
http://dx.doi.org/10.1029/91JA02377
7.
7. D. Sibeck, G. Paschmann, R. Treumann, S. Fuselier, W. Lennartsson, M. Lockwood, R. Lundin, K. Ogilvie, T. Onsager, T.-D. Phan, M. Roth, M. Scholer, N. Sckopke, K. Stasiewicz, and M. Yamauchi, Space Sci. Rev. 88, 207 (1999).
http://dx.doi.org/10.1023/A:1005255801425
8.
8. H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro, Nature (London) 430, 755 (2004).
http://dx.doi.org/10.1038/nature02799
9.
9. J. Lemaire, Planet. Space Sci. 25, 887 (1977).
http://dx.doi.org/10.1016/0032-0633(77)90042-3
10.
10. W. H. Bostick, Phys. Rev. 104, 292 (1956).
http://dx.doi.org/10.1103/PhysRev.104.292
11.
11. The Oxford English Dictionary, 2nd ed., edited by J. Simpson and E. Weiner (Oxford University Press, Oxford, 1989).
12.
12. G. Schmidt, Phys. Fluids 3, 961 (1960).
http://dx.doi.org/10.1063/1.1706163
13.
13. W. Peter and N. Rostoker, Phys. Fluids 25, 730 (1982).
http://dx.doi.org/10.1063/1.863799
14.
14. F. J. Wessel, R. Hong, J. Song, A. Fisher, N. Rostoker, A. Ron, R. Li, and R. Y. Fan, Phys. Fluids 31, 3778 (1988).
http://dx.doi.org/10.1063/1.866897
15.
15. H. Ishizuka and S. Robertson, Phys. Fluids 25, 2353 (1982).
http://dx.doi.org/10.1063/1.863719
16.
16. B. H. Ripin, E. A. McLean, C. K. Manka, C. Pawley, J. A. Stamper, T. A. Peyser, A. N. Mostovych, J. Grun, and J. Huba, Phys. Rev. Lett. 59, 2299 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2299
17.
17. A. B. Hassam and J. D. Huba, Geophys. Res. Lett. 14, 60, doi:10.1029/GL014i001p00060 (1987).
http://dx.doi.org/10.1029/GL014i001p00060
18.
18. B. Häusler, R. A. Treumann, O. H. Bauer, G. Haerendel, R. Bush, C. W. Carlsson, B. Theile, M. C. Kelley, V. S. Dokunin, and Y. Y. Ruzhin, J. Geophys. Res. 91, 287, doi:10.1029/JA091iA01p00287 (1986).
http://dx.doi.org/10.1029/JA091iA01p00287
19.
19. J. Lemaire, J. Plasma Phys. 33, 425 (1985).
http://dx.doi.org/10.1017/S0022377800002592
20.
20. M. M. Echim, J. F. Lemaire, and M. Roth, Phys. Plasmas 12, 072904 (2005).
http://dx.doi.org/10.1063/1.1943848
21.
21. T. Hurtig, N. Brenning, and M. A. Raadu, Phys. Plasmas 10, 4291 (2003).
http://dx.doi.org/10.1063/1.1619381
22.
22. T. Hurtig, N. Brenning, and M. A. Raadu, Phys. Plasmas 11, L33 (2004).
http://dx.doi.org/10.1063/1.1753575
23.
23. H. Gunell, T. Hurtig, H. Nilsson, M. Koepke, and N. Brenning, Plasma Phys. Controlled Fusion 50, 074013 (2008).
http://dx.doi.org/10.1088/0741-3335/50/7/074013
24.
24. H. Gunell, J. J. Walker, M. E. Koepke, T. Hurtig, N. Brenning, and H. Nilsson, Phys. Plasmas 16, 112901 (2009).
http://dx.doi.org/10.1063/1.3267860
25.
25. M. André, R. Behlke, J.-E. Wahlund, A. Vaivads, A.-I. Eriksson, A. Tjulin, T. D. Carozzi, C. Cully, G. Gustafsson, D. Sundkvist, Y. Khotyaintsev, N. Cornilleau-Wehrlin, L. Rezeau, M. Maksimovic, E. Lucek, A. Balogh, M. Dunlop, P.-A. Lindqvist, F. Mozer, A. Pedersen, and A. Fazakerley, Ann. Geophys. 19, 1471 (2001).
http://dx.doi.org/10.5194/angeo-19-1471-2001
26.
26. J. Woch and R. Lundin, J. Geophys. Res. 97, 1431, doi:10.1029/91JA02490 (1992).
http://dx.doi.org/10.1029/91JA02490
27.
27. R. Lundin, J.-A. Sauvaud, H. Rème, A. Balogh, I. Dandouras, J. M. Bosqued, C. Carlson, G. K. Parks, E. Möbius, L. M. Kistler, B. Klecker, E. Amata, V. Formisano, M. Dunlop, L. Eliasson, A. Korth, B. Lavraud, and M. McCarthy, Ann. Geophys. 21, 457 (2003).
http://dx.doi.org/10.5194/angeo-21-457-2003
28.
28. D. Hubert, C. Perche, C. C. Harvey, C. Lacombe, and C. T. Russell, Geophys. Res. Lett. 16, 159, doi:10.1029/GL016i002p00159 (1989).
http://dx.doi.org/10.1029/GL016i002p00159
29.
29. S. Savin, L. Zelenyi, E. Amata, J. Buechner, J. Blecki, A. Greco, S. Klimov, R. E. Lopez, B. Nikutowski, E. Panov, J. Pickett, J. L. Rauch, S. Romanov, P. Song, A. Skalsky, V. Smirnov, A. Taktakishvili, P. Veltry, and G. Zimbardo, Planet. Space Sci. 53, 133 (2005).
http://dx.doi.org/10.1016/j.pss.2004.09.037
30.
30. S. Savin, E. Amata, L. Zelenyi, V. Budaev, G. Consolini, R. Treumann, E. Lucek, J. Safrankova, Z. Nemecek, Y. Khotyaintsev, M. Andre, J. Buechner, H. Alleyne, P. Song, J. Blecki, J. L. Rauch, S. Romanov, S. Klimov, and A. Skalsky, JETP Lett. 87, 593 (2008).
http://dx.doi.org/10.1134/S0021364008110015
31.
31. S. Savin, V. Budaev, L. Zelenyi, E. Amata, D. Sibeck, V. Lutsenko, N. Borodkova, H. Zhang, V. Angelopoulos, J. Safrankova, Z. Nemecek, J. Blecki, J. Buechner, L. Kozak, S. Romanov, A. Skalsky, and V. Krasnoselskikh, JETP Lett. 93, 754 (2011).
http://dx.doi.org/10.1134/S0021364011120137
32.
32. H. Hietala, N. Partamies, T. V. Laitinen, L. B. N. Clausen, G. Facskó, A. Vaivads, H. E. J. Koskinen, I. Dandouras, H. Rème, and E. A. Lucek, Ann. Geophys. 30, 33 (2012).
http://dx.doi.org/10.5194/angeo-30-33-2012
33.
33. T. Karlsson, N. Brenning, H. Nilsson, J.-G. Trotignon, X. Vallières, and G. Facsko, J. Geophys. Res. 117, A03227, doi:10.1029/2011JA017059 (2012).
http://dx.doi.org/10.1029/2011JA017059
34.
34. E. V. Mishin, P. A. Puhl-Quinn, and O. Santolik, Geophys. Res. Lett. 37, L07106, doi:10.1029/2010GL042929 (2010).
http://dx.doi.org/10.1029/2010GL042929
35.
35. J. Shue, J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, J. Geophys. Res. 102, 9497, doi:10.1029/97JA00196 (1997).
http://dx.doi.org/10.1029/97JA00196
36.
36. R. P. Lepping, M. H. Acũna, L. F. Burlaga, W. M. Farrell, J. A. Slavin, K. H. Schatten, F. Mariani, N. F. Ness, F. M. Neubauer, Y. C. Whang, J. B. Byrnes, R. S. Kennon, P. V. Panetta, J. Scheifele, and E. M. Worley, Space Sci. Rev. 71, 207 (1995).
http://dx.doi.org/10.1007/BF00751330
37.
37. K. W. Ogilvie, D. J. Chornay, R. J. Fritzenreiter, F. Hunsaker, J. Keller, J. Lobell, G. Miller, J. D. Scudder, E. C. Sittler, Jr., R. B. Torbert, D. Bodet, G. Needell, A. J. Lazarus, J. T. Steinberg, J. H. Tappan, A. Mavretic, and E. Gergin, Space Sci. Rev. 71, 55 (1995).
http://dx.doi.org/10.1007/BF00751326
38.
38. A. Balogh, C. M. Carr, M. H. Acuña, M. W. Dunlop, T. J. Beek, P. Brown, K.-H. Fornaçon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, and K. Schwingenschuh, Ann. Geophys. 19, 1207 (2001).
http://dx.doi.org/10.5194/angeo-19-1207-2001
39.
39. D. G. Mitchell, F. Kutchko, D. J. Williams, T. E. Eastman, and L. A. Frank, J. Geophys. Res. 92, 7394, doi:10.1029/JA092iA07p07394 (1987).
http://dx.doi.org/10.1029/JA092iA07p07394
40.
40. H. Rème, C. Aoustin, J. M. Bosqued, I. Dandouras, B. Lavraud, J. A. Sauvaud, A. Barthe, J. Bouyssou, T. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J. L. Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. D’Uston, E. Möbius, L. M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C. W. Carlson, D. W. Curtis, C. Ingraham, R. P. Lin, J. P. McFadden, G. K. Parks, T. Phan, V. Formisano, E. Amata, M. B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. di Lellis, M. F. Marcucci, G. Pallocchia, A. Korth, P. W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E. G. Shelley, S. Fuselier, A. G. Ghielmetti, W. Lennartsson, C. P. Escoubet, H. Balsiger, R. Friedel, J.-B. Cao, R. A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, and B. Sonnerup, Ann. Geophys. 19, 1303 (2001).
http://dx.doi.org/10.5194/angeo-19-1303-2001
41.
41. A. D. Johnstone, C. Alsop, S. Burge, P. J. Carter, A. J. Coates, A. J. Coker, A. N. Fazakerley, M. Grande, R. A. Gowen, C. Gurgiolo, B. K. Hancock, B. Narheim, A. Preece, P. H. Sheather, J. D. Winningham, and R. D. Woodliffe, Space Sci. Rev. 79, 351 (1997).
http://dx.doi.org/10.1023/A:1004938001388
42.
42. G. Gustafsson, M. André, T. Carozzi, A. I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J. A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, and J.-E. Wahlund, Ann. Geophys. 19, 1219 (2001).
http://dx.doi.org/10.5194/angeo-19-1219-2001
43.
43. T. Phan, M. Dunlop, G. Paschmann, B. Klecker, J. Bosqued, H. Rème, A. Balogh, C. Twitty, F. Mozer, C. Carlson, C. Mouikis, and L. Kistler, Ann. Geophys. 22, 2355 (2004).
http://dx.doi.org/10.5194/angeo-22-2355-2004
44.
44. M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.603
45.
45. N. Brenning, T. Hurtig, and M. A. Raadu, Phys. Plasmas 12, 012309 (2005).
http://dx.doi.org/10.1063/1.1812277
46.
46. D. J. Southwood, C. J. Farrugia, and M. A. Saunders, Planet. Space Sci. 36, 503 (1988).
http://dx.doi.org/10.1016/0032-0633(88)90109-2
47.
47. J. W. Dungey, Phys. Rev. Lett. 6, 47 (1961).
http://dx.doi.org/10.1103/PhysRevLett.6.47
48.
48. H. Hasegawa, M. Fujimoto, K. Takagi, Y. Saito, T. Mukai, and H. Rème, J. Geophys. Res., [Space Phys.] 111, 9203, doi:10.1029/2006JA011728 (2006).
http://dx.doi.org/10.1029/2006JA011728
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/7/10.1063/1.4739446
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Orbit of the Cluster spacecraft on 25 January 2002. The top left panel shows the orbit of Cluster 3 in GSE coordinates, projected onto the x–y plane; the top right shows a projection on the x–z plane; the bottom left panel shows the Cluster 3 orbit in cylindrical coordinates; and the bottom right panel shows a closeup of the spacecraft orbits near the magnetopause in cylindrical coordinates. The position of the magnetopause crossing of Cluster 3 is marked by green circles in all panels, and the positions of the other spacecraft at that same instant are shown the bottom right panels as black, red, and blue circles for Cluster 1, 2, and 4, respectively. A Shue model magnetopause, which has been scaled to agree with the observed Cluster 3 magnetopause crossing, is shown in black in all panels. Specifically, what is shown in the upper panels is the intersection of the magnetopause with the plane of the figure. That is why the green circle, which shows the projection of the magnetopause crossing onto that plane, does not lie on the curve showing the magnetopause.

Image of FIG. 2.

Click to view

FIG. 2.

Solar wind parameters measured by the Wind spacecraft. Panel (a) shows the proton density; (b) the solar wind speed; and (c) the magnetic field magnitude (black), and the GSE (blue), (green), and (red) components.

Image of FIG. 3.

Click to view

FIG. 3.

Data from the Cluster spacecraft on 25 January 2002. The left column shows data from Cluster 1, the middle column Cluster 3, and the right column shows data from Cluster 4. Panels (a-c) show the magnetic field components (blue), (green), (red), and in nanoteslas. The coordinates are in the GSE system. The curves are labelled at the right hand side of each panel. Panels (d-f) show the dynamic pressure for the three spacecraft, respectively. Panels (g-i) show the velocity components in GSE coordinates: (blue), (green), and (red) in kilometers per second. The curves are labelled at the right hand side of each panel. Panels (j-l) show the proton density. Panels (m-o) show the proton temperature. Panels (p-r) show the ratio of the velocity component normal to the magnetopause to the total velocity . Panels (s-u) show the cross-magnetopause proton flux perpendicular to the magnetopause . The red dots in panels (j-u) highlight data points with large flux across the magnetopause (). In all panels, the dashed and solid vertical lines mark the inner and outer boundaries of the transition region, respectively. The two arrows in panel (s) mark the times for which distribution functions are shown in Fig. 10.

Image of FIG. 4.

Click to view

FIG. 4.

Field-aligned electron spectrum (a), (c), and (e) for Cluster 1, 3, and 4, respectively. Omnidirectional ion spectrum for Cluster 1, 3, and 4 are shown in panels (b), (d), and (f), respectively. The ion spectra for Cluster 1 and 3 were measured by the CIS-HIA sensor, and that for Cluster 4 by CIS-CODIF. The electron spectra were measured by the PEACE instrument. The quantity shown on the color scale is the logarithm of the flux in units of cm 2 s 1 sr 1 keV 1. The dashed and solid vertical lines mark the inner and outer boundaries of the transition region, respectively.

Image of FIG. 5.

Click to view

FIG. 5.

Density measured by Cluster 1 (black) and by Cluster 3 (green) between 10:39 and 10:43. During this period Cluster 3 crossed the magnetopause, while Cluster 1 was located on the magnetospheric side of it. The magnetopause crossing time for spacecraft 3 was identified in magnetic field data as 10:41:23 UT.

Image of FIG. 6.

Click to view

FIG. 6.

Closeup of the Cluster 1 (a) and 3 (b) ion spectra from 10:23 to 10:25. Cluster 3 was located closer to the magnetopause and Cluster 1 farther inside the magnetosphere, as is seen by the orbit plot in Fig. 1.

Image of FIG. 7.

Click to view

FIG. 7.

Color-coded ion temperature along the orbits of Cluster 1 and 3. The spacecraft positions at 10:23:58 have been marked in the figure. The same cylindrical coordinate system as in Fig. 1 is used. Also like in Fig. 1, a scaled Shue model magnetopause is shown in the top right corner in the position where it was encountered by Cluster 3.

Image of FIG. 8.

Click to view

FIG. 8.

Panel (a) shows the angle between the plasma velocity measured by Cluster 3 and the direction from Cluster 3 to Cluster 1. Panel (b) shows the predicted time of flight from spacecraft 3 to 1 based on the velocity measurements by spacecraft 3 (green). Panel (c) shows the density measured by spacecraft 1 (black) and by spacecraft 3 (green). In all panels, the Cluster 3 data, shown by green lines, have been delayed s, corresponding to the dashed line in panel (b).

Image of FIG. 9.

Click to view

FIG. 9.

The upper panels show the perpendicular velocity component (black solid curve) for Cluster 1 (a) and Cluster 2 (b). For comparison, is shown by the red dots. The lower panels (c) and (d) show the perpendicular (black curves) and parallel (blue curves) velocity components. The dashed and solid vertical lines mark the inner and outer boundaries of the transition region, respectively.

Image of FIG. 10.

Click to view

FIG. 10.

Velocity distribution functions for Cluster 1 at 10:21:11 (left) and 10:53:19 (right). The horizontal axis shows the velocity component normal to the magnetopause, and the vertical axis shows the tangential component parallel to the magnetosheath flow direction. The observation times are marked by arrows in panel (s) of Fig. 3.

Image of FIG. 11.

Click to view

FIG. 11.

Rotational discontinuity test. The red curves show in the direction indicated in each panel. The blue curves show in the same direction in panels (a) and (b), and in panels (c) and (d). Cluster 1 results are shown in panels (a) and (c) and Cluster 3 in panels (b) and (d).

Image of FIG. 12.

Click to view

FIG. 12.

A sketch of the plasmoid motion. In the magnetosheath, plasmoids move mostly parallel to the magnetopause, but with an overlaid component inward along the normal direction. Further in, the direction of motion is increasingly inward.

Tables

Generic image for table

Click to view

Table I.

Solar wind parameters from the Wind spacecraft.

Generic image for table

Click to view

Table II.

Mean and peak cross-magnetopause fluxes during the last 30 min before each spacecraft crossed the magnetopause. The two columns with numerical values show the flux calculated by Eqs. (1)–(4) as described in Sec. IV and by using the Shue model with input data from measurements by the Wind spacecraft to compute the magnetopause normal.

Loading

Article metrics loading...

/content/aip/journal/pop/19/7/10.1063/1.4739446
2012-07-20
2014-04-25

Abstract

Data from the Cluster spacecraft during their magnetopause crossing on 25 January 2002 are presented. The magnetopause was in a state of slow non-oscillatory motion during the observational period. Coherent structures of magnetosheathplasma, here typified as plasmoids, were seen on closed magnetic field lines on the inside of the magnetopause. Using simultaneous measurements on two spacecraft, the inward motion of the plasmoids is followed from one spacecraft to the next, and it is found to be in agreement with the measured ion velocity. The plasma characteristics and the direction of motion of the plasmoids show that they have penetrated the magnetopause, and the observations are consistent with the concept of impulsive penetration, as it is known from theory, simulations, and laboratory experiments. The mean flux across the magnetopause observed was 0.2%–0.5% of the solar wind flux at the time, and the peak values of the flux inside the plasmoids reached approximately 20% of the solar wind flux.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/7/1.4739446.html;jsessionid=278sljmlii3r2.x-aip-live-02?itemId=/content/aip/journal/pop/19/7/10.1063/1.4739446&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasma penetration of the dayside magnetopause
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/7/10.1063/1.4739446
10.1063/1.4739446
SEARCH_EXPAND_ITEM