1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/19/8/10.1063/1.4747162
1.
1. R. L. Kaufmann, J. Geophys. Res. 92, 7471, doi:10.1029/JA092iA07p07471 (1987).
http://dx.doi.org/10.1029/JA092iA07p07471
2.
2. D. G. Mitchell, D. J. Williams, C. Y. Huang, L. A. Frank, and C. T. Russell, Geophys. Res. Lett. 17, 583, doi:10.1029/GL017i005p00583 (1990).
http://dx.doi.org/10.1029/GL017i005p00583
3.
3. V. A. Sergeev, P. Tanskanen, K. Mursula, A. Korth, and R. C. Elphic, J. Geophys. Res. 95, 3819, doi:10.1029/JA095iA04p03819 (1990).
http://dx.doi.org/10.1029/JA095iA04p03819
4.
4. J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek, A. Balogh, M. André, H. Rème, M. Hesse, and C. Mouikis, J. Geophys. Res. 110, A09206, doi:10.1029/2004JA010708 (2005).
http://dx.doi.org/10.1029/2004JA010708
5.
5. A. Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, and C. J. Owen, Nat. Phys. 3, 235 (2007).
http://dx.doi.org/10.1038/nphys574 (2007)
6.
6. R. Nakamura, W. Baumjohann, M. Fujimoto, Y. Asano, A. Runov, C. J. Owen, A. N. Fazakerley, B. Klecker, H. Rème, E. A. Lucek, M. André, and Y. Khotyaintsev, J. Geophys. Res. 113, A07S16, doi:10.1029/2007JA012760 (2008).
http://dx.doi.org/10.1029/2007JA012760
7.
7. V. A. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, J. McFadden, D. Larson, R. Nakamura, and A. Runov, Geophys. Res. Lett. 36, L21105, doi:10.1029/2009GL040658 (2009).
http://dx.doi.org/10.1029/2009GL040658
8.
8. J. Liang, W. W. Liu, and E. F. Donovan, J. Geophys. Res. 114, A10215, doi:10.1029/2009JA014357 (2009).
http://dx.doi.org/10.1029/2009JA014357
9.
9. A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 116, A09233, doi:10.1029/2011JA016801 (2011).
http://dx.doi.org/10.1029/2011JA016801
10.
10. W. W. Liu, J. Liang, and E. F. Donovan, J. Geophys. Res. 115, A03211, doi:10.1029/2009JA014359 (2010).
http://dx.doi.org/10.1029/2009JA014359
11.
11. A. A. Petrukovich, A. V. Artemyev, H. V. Malova, V. Y. Popov, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 116, A00I25, doi:10.1029/2010JA015749 (2011).
http://dx.doi.org/10.1029/2010JA015749
12.
12. E. N. Parker, Astrophys. J. 174, 499 (1972).
http://dx.doi.org/10.1086/151512
13.
13. B. C. Low, Astrophys. J. 323, 358 (1987).
http://dx.doi.org/10.1086/165833
14.
14. P. L. Pritchett, F. V. Coroniti, R. Pellat, and H. Karimabadi, J. Geophys. Res. 96, 11523, doi:10.1029/91JA01094 (1991).
http://dx.doi.org/10.1029/91JA01094
15.
15. K. Schindler and J. Birn, J. Geophys. Res. 98, 15477, doi:10.1029/93JA01047 (1993).
http://dx.doi.org/10.1029/93JA01047
16.
16. J. Birn, M. Hesse, and K. Schindler, J. Geophys. Res. 103, 6843, doi:10.1029/97JA03602 (1998).
http://dx.doi.org/10.1029/97JA03602
17.
17. E. R. Priest and T. G. Forbes, Magnetic Reconnection (Cambridge University Press, Cambridge, UK, 2000).
18.
18. L. M. Zelenyi, M. I. Sitnov, H. V. Malova, and A. S. Sharma, Nonlinear Processes Geophys. 7, 127 (2000).
http://dx.doi.org/10.5194/npg-7-127-2000
19.
19. K. Arzner and M. Scholer, J. Geophys. Res. 106, 3827, doi:10.1029/2000JA000179 (2001).
http://dx.doi.org/10.1029/2000JA000179
20.
20. P. L. Pritchett, J. Geophys. Res. 106, 25961, doi:10.1029/2001JA000016 (2001).
http://dx.doi.org/10.1029/2001JA000016
21.
21. K. Schindler and J. Birn, J. Geophys. Res. 107, 1193, doi:10.1029/2001JA000304 (2002).
http://dx.doi.org/10.1029/2001JA000304
22.
22. J. Birn and K. Schindler, J. Geophys. Res. 107, 1117, doi:10.1029/2001JA000291 (2002).
http://dx.doi.org/10.1029/2001JA000291
23.
23. J. Birn, K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P. L. Pritchett, K. Schindler, L. Yin, J. Büchner, T. Neukirch, and E. R. Priest, Geophys. Res. Lett. 32, L06105, doi:10.1029/2004GL022058 (2005).
http://dx.doi.org/10.1029/2004GL022058
24.
24. K. Schindler and M. Hesse, Phys. Plasmas 15, 042902 (2008).
http://dx.doi.org/10.1063/1.2907359
25.
25. X.-Z. Zhou, V. Angelopoulos, A. Runov, M. I. Sitnov, F. Coroniti, P. Pritchett, Z. Y. Pu, Q.-G. Zong, J. P. McFadden, D. Larson, and K.-H. Glassmeier, J. Geophys. Res. 114, 03223, doi:10.1029/2008JA013777 (2009).
http://dx.doi.org/10.1029/2008JA013777
26.
26. K. Schindler and M. Hesse, Phys. Plasmas 17, 082103 (2010).
http://dx.doi.org/10.1063/1.3464198
27.
27. J. Birn, R. Nakamura, E. V. Panov, and M. Hesse, J. Geophys. Res. 116, A01210, doi:10.1029/2010JA016083 (2011).
http://dx.doi.org/10.1029/2010JA016083
28.
28. J. Birn, K. Schindler, and M. Hesse, J. Geophys. Res. 109, A02217, doi:10.1029/2003JA010 (2004).
http://dx.doi.org/10.1029/2003JA010
29.
29. J. Birn, K. Schindler, and M. Hesse, “ Magnetotail aurora connection: The role of thin current sheets,” J. Geophys. Res. (in press).
30.
30. P. L. Pritchett and F. V. Coroniti, Geophys. Res. Lett. 21, 1587, doi:10.1029/94GL01364 (1994).
http://dx.doi.org/10.1029/94GL01364
31.
31. J. Sanny, R. L. McPherron, C. T. Russell, D. N. Baker, T. I. Pulkkinen, and A. Nishida, J. Geophys. Res. 99, 5805, doi:10.1029/93JA03235 (1994).
http://dx.doi.org/10.1029/93JA03235
32.
32. M. Hesse, D. Winske, M. Kuznetsova, J. Birn, and K. Schindler, J. Geomagn. Geoelectr. 48, 749 (1996).
http://dx.doi.org/10.5636/jgg.48.749
33.
33. Auroral Plasma Physics, edited by G. Paschmann, S. Haaland, and R. Treumann (Kluwer Academic, Dordrecht, The Netherlands, 2003).
34.
34. G. Marklund, T. Johansson, S. Lileo, and T. Karlsson, J. Geophys. Res. 112, A01208, doi:10.1029/2006JA011804 (2007).
http://dx.doi.org/10.1029/2006JA011804
35.
35. G. Haerendel, J. Geophys. Res. 114, A06214, doi:10.1029/2009JA014138 (2009).
http://dx.doi.org/10.1029/2009JA014138
36.
36. P. Carlqvist and R. Boström, J. Geophys. Res. 75, 7140, doi:10.1029/JA075i034p07140 (1970).
http://dx.doi.org/10.1029/JA075i034p07140
37.
37. F. S. Mozer, C. A. Cattell, M. K. Hudson, R. L. Lysak, M. Temerin, and R. B. Torbert, Space Sci. Rev. 27, 155 (1980).
http://dx.doi.org/10.1007/BF00212238 (1980)
38.
38. P. F. Mizera, D. J. Gorney, and J. F. Fennell, J. Geophys. Res. 87, 1535, doi:10.1029/JA087iA03p01535 (1982).
http://dx.doi.org/10.1029/JA087iA03p01535
39.
39. G. Marklund, T. Karlsson, and J. Clemmons, J. Geophys. Res. 102, 17509, doi:10.1029/97JA00334 (1997).
http://dx.doi.org/10.1029/97JA00334
40.
40. G. Marklund, T. Karlsson, S. Figueiredo, T. Johansson, P.-A. Lindqvist, M. André, S. Buchert, L. M. Kistler, and A. Fazakerley, Nonlinear Processes Geophys. 11(5/6 ), 709 (2004).
http://dx.doi.org/10.5194/npg-11-709-2004
41.
41. S. Figueiredo, G. Marklund, T. Karlsson, T. Johansson, Y. Ebihara, M. Ejiri, N. Ivchenko, P.-A. Lindqvist, H. Nilsson, and A. Fazakerley, Ann. Geophys. 23, 2531 (2005).
http://dx.doi.org/10.5194/angeo-23-2531-2005
42.
42. K. Schindler, D. Pfirsch, and H. Wobig, Plasma Phys. 15, 1165 (1973).
http://dx.doi.org/10.1088/0032-1028/15/12/001
43.
43. K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, UK, 2007).
44.
44. T. Neukirch, J. Geophys. Res. 98, 3753, doi:10.1029/92JA02704 (1993).
http://dx.doi.org/10.1029/92JA02704
45.
45. W.-Z. Fu and L.-N. Hau, Phys. Plasmas 12, 070701 (2005).
http://dx.doi.org/10.1063/1.1941047
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/8/10.1063/1.4747162
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Two examples for magnetic dips. The solid and dashed curves shown in the upper graph correspond to two different choices for , picked arbitrarily except that they have the same parameter (in addition to symmetry, single extremum and ). The lower graph shows the corresponding electric potentials given by Eq. (33) with fixed also.

Image of FIG. 2.

Click to view

FIG. 2.

Parameter space vs. for magnetic dips and bumps as defined in the text. Shown are the regions that correspond to different qualitative shapes of the electric potential sketched inside the boxes. Same qualitative shapes are indicated by the same color. The region above the black curve is unphysical (negative plasma pressure), the green line separates magnetic dips () from magnetic bumps (), on the red curve changes sign, on the blue curve the two side minima on one side merge with the central extremum, and on the magenta line the side minima on one side disappear when their values reach 0.

Image of FIG. 3.

Click to view

FIG. 3.

Two examples for magnetic steps. The solid and dashed curves shown in the upper graph correspond to two different choices for , picked arbitrarily except that they have the same parameter (in addition to monotonic increase with and ). The lower graph shows the corresponding electric potentials given by Eq. (33) with a fixed value of

Image of FIG. 4.

Click to view

FIG. 4.

Parameter space vs. for magnetic steps. Shown are the regions that correspond to different qualitative shapes of the electric potential indicated in the boxes. Steps where decreases with (i.e., ) are left out, because these shapes can be reduced to corresponding shapes with by reversal of the axis and a renormalization.

Image of FIG. 5.

Click to view

FIG. 5.

The figure provides an application of the present model to an earlier particle simulation (Section IV of Ref. 26, interval ). The upper graph shows the magnetic field profile. The lower graph gives the electric potential of the simulation (solid curve), the model curve based on simulation data (dashed line) and the adjusted model potential (fine-scale broken line). The parameter was determined by a minimum variance fit.

Image of FIG. 6.

Click to view

FIG. 6.

This figure corresponds to Figure 5 for the second simulation (Section V of Ref. 26). The parameter was determined by a minimum variance fit.

Loading

Article metrics loading...

/content/aip/journal/pop/19/8/10.1063/1.4747162
2012-08-20
2014-04-20

Abstract

Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as “U” or “S” shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/19/8/1.4747162.html;jsessionid=6gc7la5hqggm1.x-aip-live-01?itemId=/content/aip/journal/pop/19/8/10.1063/1.4747162&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions
http://aip.metastore.ingenta.com/content/aip/journal/pop/19/8/10.1063/1.4747162
10.1063/1.4747162
SEARCH_EXPAND_ITEM