1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/2/11/10.1063/1.871025
1.
1.J. H. Nuckolls, L. Wood, A. Thiessen and G. B. Zimmerman, “Laser compression of matter to super-high densities: thermonuclear (CTR) applications,” Nature 239, 129 (1972).
2.
2.K. A. Brueckner and S. Jorna, “Laser-driven fusion,” Rev. Mod. Phys. 46, 325 (1974).
3.
3.J. D. Lindl, R. L. McCrory, and E. M. Campbell, “Progress toward ignition and burn propagation in inertial confinement fusion,” Phys. Today 45(9), 32 (1992).
4.
4.R. M. White, D. A. Resler, and S. I. Warshaw, “Evaluation of chargedparticle reactions for fusion applications,” Proceedings of the International Convergence on Nuclear Data for Science and Technology 1991, Mich, Germany, edited by S. M. Qaim (Springer-Verlag, Berlin, 1992), p. 834.
5.
5.S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961).
6.
6.J. H. Nuckolls, “Laser induced implosion and thermonuclear burn,” Laser Interaction and Related Plasma Phenomena, edited by H. J. Schwara and H. Hora (Plenum, New York, 1994), Vol. 3B, pp. 399–425.
7.
7.See National Technical Information Service Document No, UCRL-74116 (J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser implosion of DT to densities Optimum pulse shape; fusion yield vs laser energy,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-74116, 1972). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
8.
8.J. J. Cordey, R. J. Goldston, and R. R. Parker, “Progress toward a tokamak fusion reactor,” Phys. Today 45, 22 (1992).
9.
9.J. D. Strachen, H. Adler, P. Ailing, C. Ancher, H. Anderson, J. Anderson, D. Ashcroft, C. Barnes, G. Barnes, S. Batha, M. Bell, R. Bell, M. Bitter, W. Blanchard, N. Bretz, R. Budny, C. Bush, R. Camp, M. Caorlin, S. Cauffman, Z. Chang, C. Cheng, J. Collins, G. Coward, D. Darrow, I. DeLooper, H. Duong, L. Dudek, R. Durst, P. Efthimion, D. Ernst, R. Fisher, R. Fonck, E. Fredrickson, N. Fromm, G. Fu, H. Furth, C. Gentile, N. Gorelenkov, B. Grek, L. Grisham, G. Hammett, G. Hanson, R. HawryIuk, W. Heidbrink, H. Herrmann, K. Hill, J. Hosea, H. Hsuan, A. Janos, D. Jassby, F. Jobes, D. Johnson, L. Johnson, J. Kamperschroer, H. Kugel, N. Lam, P. LaMarche, M. Loughlin, B. LeBlanc, M. Leonard, F. Levinton, J. Machuzak, D. Mansfield, A. Martin, E. Mazzucato, R. Majeski, E. Marmar, J. McChesney, B. McCormack, D. McCune, K. McGuire, G. McKee, D. Meade, S. Medley, D. Mikkelsen, D. Mueller, M. Murakami, A. Nagy, R. Nazikian, R. Newman, T. Nishitani, M. Norris, T. O’Connor, M. Oldaker, M. Osakabe, D. Owens, H. Park, W. Park, S. Paul, G. Pearson, E. Perry, M. Petrov, C. Phillips, S. Pitcher, A. Ramsey, D. Rasmussen, M. Redi, D. Roberts, J. Rogers, R. Rossmassler, A. Roquemore, E. Ruskov, S. Sabbagh, M. Sasao, G. Schilling, J. Schivell, G. Schmidt, S. Scott, R. Sissingh, C. Skinner, J. Snipes, J. Stevens, T. Stevenson, B. Stratton, E. Synakowski, W. Tang, G. Taylor, J. Terry, M. Thompson, M. Tuszewski, C. Vannoy, A. von Halle, S. von Goeler, D. Voorhees, R. Walters, R. Wieland, J. Wilgen, M. Williams, J. Wilson, K. Wong, G. Wurden, M. Yamada, K. Young, M. Zarnstorff, and S. Zweben, “Fusion power production from TFTR plasmas fueled with deuterium and tritium,” Phys. Rev. Lett. 72, 3526 (1994).
10.
10.K. Huang, Statistical Mechanics (Wiley, New York, 1967), pp. 224–252.
11.
11.S. P. Lyon and J. D. Johnson, “Sesame: The Los Alamos national laboratory equation of state database,” Los Alamos National Laboratory, Los Alamos, NM, LA-UR-92-3407 (1992) (unpublished).
12.
12.J. D. Lindl, “Physics of ignition for ICF capsules,” International School of Plasma Physics Piero Caldirola: lnertial Confinement Fusion (1988), edited by A. Caruso and E. Sindoni (Editrice Compositori, Bologna, Italy, 1988), pp. 617–631.
13.
13.C. Longmire, Elementary Plasma Physics (Wiley, New York, 1967), p. 203.
14.
14.G. S. Fraley, E. J. Linnebur, R. J. Mason, and R. L. Morse, “Thermonuclear burn characteristics of compressed deuterium-tritium microspheres,” Phys. Fluids 17, 474 (1974).
15.
15.W. M. Manheimer and D. G. Colombant, “Steady-state planar ablative flow,” Phys. Fluids 25, 1644 (1982).
16.
16.J. Bunkenberg, J. Boles, D. Brown, J. Eastman, J. Hoose, R. Hopkins, L. Iwan, S. Jacobs, J. Kelly, S. Kumpan, S. Letzring, D. Lonobile, L. Lund, G. Mourou, S. Refermat, W. Seka, J. Soures, and K. Walsh, “The Omega high-power phosphate-glass system: Design and performance,” IEEE J. Quantum Electron. QE-9, 1620 (1981).
17.
17.J. M. Soures, R. Hutchison, S. Jacobs, L. Lund, R. McCrory, and M. Richardson, “Omega: A short-wavelength laser for fusion experiments,” Proceedings of the 10th Symposium on Fusion Engineering, edited by C. C. Hopkins, D. M. Pulyer, J. N. Stacy, and K. E. Wakefield (Institute of Electrical and Electronic Engineers, New York, 1983), p. 1302.
18.
18.J. L. Emmet, W. F. Krupke, and J. B. Trenholme, “Future development of high-power solid-state laser systems,” Sov. J. Quantum Electron. 13, 1 (1983).
19.
19.J. T. Hunt and D. R. Speck, “Present and future performance of the Nova laser system,” Opt. Eng. 28, 461 (1989).
20.
20.C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, M. Nakatsuka, T. Mochizuki, J. Kuroda, and S. Nakai, “ Nd-doped phosphate glass laser systems for laser-fusion research,” IEEE J. Quantum Electron. QE-9, 1639 (1981).
21.
21.J. M. Soures, R. McCrory, T. Boehly, R. Craxton, S. Jacobs, J. Kelly, T. Kessler, J. Knauer, R. Kremens, S. Kumpan, S. Letzring, W. Seka, R. Short, M. Skeldon, S. Skupsky, and C. Verdon, “Omega Upgrade laser for direct-drive target experiments,” Laser Part. Beams 11, 317 (1991).
22.
22.R. L. McCrory, J. Soures, C. Verdon, T. Boehly, D. Bradley, R. Craxton, J. Delettrez, R. Epstein, R. Hutchison, P. Jaanimagi, S. Jacobs, R. Keck, J. Kelly, T. Kessler, H. Kim, J. Knauer, R. Kremens, S. Kumpan, S. Letzring, F. Marshall, P. McKenty, S. Morse, W. Seka, R. Short, M. Skeldon, S. Skupsky, and B. Yaakobi, “Direct-drive laser fusion target physics experi ments,” Plasma Physics and Controlled Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 3, p. 31.
23.
23.S. E. Bodner, R. Lehmberg, S. Obenschain, C. Pawley, M. Pronko, J. Sethian, A. Deniz, J. Hardgrove, T. Lehecka, O. Barr, I. Begio, S. Ozuchlewski, D. Hanson, N. Kurnit, W. Leland, J. McCleod, E. Rose, and G. York, “Krypton-fluoride laser fusion development in the USA,” in Ref. 22, p. 51.
24.
24.S. P. Obenschain, S. Bodner, R. Lehmberg, A. Mostovych, C. Pawley, M. Pronko, J. Sethian, J. Stamper, A. Deniz, T. Lehecka, and J. Shipman, “Nike KrF laser development for direct drive laser fusion,” Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 51.
25.
25.W. L. Kruer, Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988).
26.
26.’National Academy of Sciences Review of the Department of Energy’s lnertial Confinement Fusion Program, Final Report (National Academy Press, Washington, DC, 1990).
27.
27.H. Nishimura, H. Shiraga, H. Takabe, Y. Kato, S. Miyamoto, M. Takagi, T. Morimatsu, T. Yamanaka, T. Jitsuno, M. Nakatsuka, and S. Nakai, “High convergence uniform implosions by cannonball targets with Gekko XII blue laser,” 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Würzburg, Germany, 1992, Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 3, p. 97.
28.
28.C. Bayer, J. L. Bourgade, H. Dumont, J. P. Garconnet, J. P. Jadaud, D. Juraszek, A. Richard, and M. Rostaing, “Indirect drive implosion experiments,” 23rd ECLIM, St. John’s College, Oxford, England (private communication, 1994).
29.
29.G. G. Kockemasov, “Laser fusion investigations on high power iodine laser ISKRA in Arzamas-16,” in Ref. 28.
30.
30.G. D. Tsakiris and R. Sigel, “X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light: II. Time-resolved measurements,” Phys. Rev. A 38, 5769 (1988).
31.
31.lnertial Confinement Fusion and High Power Laser Technology, 2nd Collection, edited by P. Xie (Publishing House of China Academy of Engineering Physics, Beijing, 1992).
32.
32.J. P. Vandevender, and D. L. Cook, “lnertial confinement fusion with light ion beams,” Science 232, 831 (1986).
33.
33.D. Cook, R. Adams, J. Aubert, L. Bacon, J. Bailey, D. Bloomquist, J. Boyes, G. Chandler, R. Coats, J. Corley, J. Crow, M. Cuneo, D. Derzon, M. Derzon, M. Desjarlais, R. Dukart, D. Fehl, A. Filuk, R. Gerber, T. Haill, D. Hanson, D. Humphreys, T. Hussey, H. Ives, D. J. Johnson, D. L. Johnson, W. Johnson, R. Kensek, M. Kiefer, R. Leeper, R. Lemke, T. Lockner, J. Maenchen, M. Matzen, D. McDaniel, P. McKay, E. McGuire, T. Mehlhorn, C. Mendel, L. Mix, A. Moats, W Nelson, C. Olson, R. Olson, T. Pointon, J. Poukey, J. Quintenz, J. Ramirez, T. Renk, G. Rochau, P. Rockett, S. Rosenthal, D. Rovang, C. Ruiz, D. Schmitt, D. Seidel, S. Slutz, R. Stinnett, W. Stygar, M. Sweeney, G. Tisone, and J. Vandevender, “Light ion driven inertial confinement fusion,” Plasma Physics and Controlled Nuclear Fusion Research 1992, Wurzburg, Germany, 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 3, pp. 63–71.
34.
34.Fusion Policy Advisory Committee Final Report, DOE/S-0081 (U.S. Department of Energy, Washington DC, 1990).
35.
35.J. D. Lindl, R. O. Bangerter, J. W.-K. Mark, and Y. L. Pan, “Review of target studies for heavy ion fusion,” Heavy Ion Inertial Fusion, edited by M. Reiser, T. Godlove, and R. Bangerter, AIP Conf. Proc. 152 (American Institute of Physics, New York, 1986).
36.
36.M. Murakami, J. Meyer-Ter-Vehn, and R. Ramis, “Thermal x-ray emission from ion-beam-heated matter,” J. X-Ray Sci. Technol. 2, 127 (1990).
37.
37.D. D.-M. Ho, J. D. Lindl, and M. Tabak, “Radiation converter physics and a method for obtaining the upper limit for gain in heavy-ion fusion,” Nucl. Fusion 34, 1081 (1994).
38.
38.W. Hogan, R. Bangerter, and G. Kulcinski, “Energy from inertial fusion,” Phys. Today 45(9), 42 (1992).
39.
39.B. G. Levi, “Veil of secrecy is lifted from parts of Livermore’s laser fusion program,” Phys. Today 47(1), 17 (1994).
40.
40.J. H. Nuckolls, Laser Interaction and Related Plasma Phenomena, edited by G. H. Miley and H. Hora (Plenum, New York, 1992), Vol. 10, pp. 23–24.
41.
41.N. G. Basov and O. N. Krokhin, “The conditions of plasma heating by the optical generator radiation,” Proceedings of the 3rd International Conference on Quantum Electronics, Paris, 1963, edited by P. Grivet and N. Bloembergen (Columbia University Press, New York, 1964), pp. 1373–1377.
42.
42.J. Meyer-Ter-Vehn, “On energy gain of fusion targets: The model of Kidder and Bodner improved,” Nucl. Fusion 22, 561 (1982).
43.
43.See National Technical Information Service Document No. DE84017287/ XAB (M. D. Rosen, J. D. Lindl, and A. R. Thiessen, “Model for gain versus laser energy in direct drive targets,” Laser Program Annual Report—83, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-83). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
44.
44.W. K. Levedahl and J. D. Lindl, “Energy scaling of ICF targets for ignition and high gain,” Lawrence Livermore National Laboratory, Livermore, CA, CLY-95-0004, 1990 (unpublished).
45.
45.J. H. Nuckolls, “Initiation of fusion by lasers,” Lawrence Livermore Laboratory, Livermore, CA, UCID-15997, 1972 (unpublished).
46.
46.G. S. Fraley and R. J. Mason, “Preheat effects on microballoon laserfusion implosions,” Phys. Rev. Lett. 35, 520 (1975).
47.
47.G. Charatis, J. Downward, R. Goforth, B. Guscott, T. Henderson, S. Gildum, R. Johnson, K. Moncur, T. Leonard, F. Mayer, S. Segall, L. Siebert, B. Solomon, and C. Thomas, “Experimental study of laser-driven compression of spherical glass shells,” Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1975), Vol. II, p. 317.
48.
48.E. K. Storm, H. G. Ahlstrom, M. J. Boyle, D. E. Campbell, L. W. Coleman, S. S. Glaros, H. N. Kornblum, R. A. Lerche, D. R. MacQuigg, D. W. Phillion, F. Rainer, R. Reinecker, V. C. Rupert, V. W. Siivinsky, D. R. Speck, C. D. Swift, and K. G. Tirsell, “Laser fusion experiments at 4 TW,” Phys. Rev. Lett. 40, 1570 (1978).
49.
49.M. D. Rosen and J. H. Nuckolls, “Exploding pusher performance—A theoretical model,” Phys. Fluids 22, 1393 (1979).
50.
50.J. D. Lindl and W. C. Mead, “Two-dimensional simulation of fluid instability in laser-fusion pellets,” Phys. Rev. Lett. 34, 1273 (1975).
51.
51.G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. 2, 51 (1975).
52.
52.Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 531057 (1984).
53.
53.S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456 (1989).
54.
54.R. H. Lehmburg, A. J. Schmitt, and S. E. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680 (1987).
55.
55.C. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).
56.
56.S. Nakai, “Progress in inertial confinement fusion in Japan,” Proceedings of the IAEA Technical Committee Meeting on Drivers for Inertial Confinement Fusion, Osaka, Japan, 1991, edited by D. Banner and S. Nakai (International Atomic Energy Agency, Vienna, 1991), pp. 19–22.
57.
57.M. Nakatsuka, K. Yoshida, Ta. Jitsuno, T. Sasaki, and S. Nakai, “Upgrade for ignition with direct drive,” in Ref. 6, pp. 130–133.
58.
58.J. D. Lindl, “Preliminary target design and spectral output for Shiva Nova,” Lawrence Livermore National Laboratory, Livermore, CA, COPD 76–106, 1976 (unpublished).
59.
59.Fusion Energy Advisory Committee, Advice and Recommendations to the U.S. Department of Energy in Response to the Charge Letter of September 18, 1992 (U.S. Department of Energy, Washington, DC, 1993).
60.
60.National Technical Information Service Document No. UCRL 5002175 (E. S. Bliss, J. A. Glaze, K. R. Manes, J. E. Murray, and F. Rainer, “Cyclops laser system,” Laser Program Annual Report—1975, Lawrence Livermore National Laboratory, Livermore, CA, pp. 69–74). Copies may be obtained from the National Technical Information Service, Springfield, VA, 22161.
61.
61.J. D. Lindl, K. Manes, and K. Brooks, “’Forerunner,’ First observation of laser-induced thermonuclear fusion and radiation implosion,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-52202, 1976. pp. 88–98 (unpublished).
62.
62.W. W. Simmons, D. R. Speck, and J. T. Hung, “Argus laser system: Performance summary,” Appl. Opt. 17, 999 (1978).
63.
63.D. R. Speck, E. S. Bliss, J. A. Glaze, J. W. Herris, F. W. Holloway, J. T. Hunt, B. C. Johnson, D. J. Kuizenga, R. G. Ozarski, H. G. Patton, P. R. Ruppert, G. J. Suski, C. D. Swift, and C. E. Thompson, “The Shiva laser-fusion facility,” IEEE J. Quantum Electron. QE-9, 1599 (1981).
64.
64.M. Rosen, “Half-Cairn physics experiments on Argus,” Laser Program Annual Report, 1978, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-78, pp. 4-42–4-51 (unpublished).
65.
65.W. C. Mead, “Intermediate density targets,” in Ref. 64, pp. 2-16–2-59 (unpublished).
66.
66.M. Boyle and E. Storm, “Review of the Argus 10× to 100× experimental program,” in Ref. 64, pp. 4-5–-42 (unpublished).
67.
67.J. M. Auerbach, E. M. Campbell, N. M. Ceglio, C. W. Hatcher, S. M. Lane, R. A. Lerche, L. N. Koppell, D. L. Matthews, K. R. Manes, W. C. Mead, R. H. Price, W. M. Ploeger, and J. C. Stevens, “10× and 100× Cairn experiment on Shiva,” Laser Program Annual Report, 1979, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-79, pp. 5–1-5-31 (unpublished).
68.
68.E. M. Campbell, W. M. Ploeger, P. H. Lee, and S. M. Lane, “Exploding-pusher-tamper areal density measurement by neutron activation,” Appl. Phys. Lett. 36, 12 (1980).
69.
69.J. D. Lindl, “Cairn hohlraum scaling study—analysis of two-nanosecond experiments,” in Ref. 67, pp. 5-80–5-88 (unpublished).
70.
70.J. M. Auerbach, K. R. Manes, and D. W. Phillion, “Cairn scaling study— The experiments,” in Ref. 67, pp. 5-62–5-79 (unpublished).
71.
71.L. J. Suter and J. M. Auerbach, “NPIRE experiments,” Laser Program Annual Report, 1980, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-80, pp. 2-37–2-45 (unpublished).
72.
72.J. D. Lindl, “Apollo targets for Nova and KrF-driven reactors,” in Ref. 67, pp. 2-77–2-88 (unpublished).
73.
73.E. Storm, “Laser program overview,” in Ref. 67, pp. 1-1–1-4 (unpublished).
74.
74.D. L. Youngs, “Numerical simulation of turbulent mixing by Rayleigh-Taylor instability,” Physica D 12, 32 (1984).
75.
75.B. W. Weinstein, “1979 Apollo targets,” in Ref. 67, UCRL-50055-79, pp. 4-8–4-9 (unpublished).
76.
76.J. M. Auerbach, S. M. Lane, and K. G. Tirsell, “Experiments with Apollo intermediate-density targets,” in Ref. 71, pp. 4-29–4-33 (unpublished).
77.
77.Y. L. Pan, “Analysis of Apollo intermediate-density targets,” in Ref. 71, pp. 4-33–4-37 (unpublished).
78.
78.W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and R. S. Craxton, “Demonstration of high efficiency third harmonic conversion of high power Nd-glass laser radiation,” Opt. Commun. 34, 469 (1980);
78.R. S. Craxton, Opt. Commun. 34, 474 (1980)., Opt. Commun.
79.
79.E. M. Campbell, R. E. Turner, L. V. Griffith, H. N. Kornblum, E. W. McCauley, W. C. Mead, B. F. Lasinski, D. W. Phillion, and B. L. Pruett, “Argus scaling experiments,” Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-81/82, 1982, pp. 4-2–4-26 (unpublished).
80.
80.S. Sakabe, R. Sigel, G. D. Tsakiris, I. B. Foldes, and P. Herrmann, “X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light. I. Time-integrated measurements,” Phys. Rev. A, 38, 5756 (1988).
81.
81.J. D. Lindl and G. E. McClellan, “Reactor target gain and symmetry calculations,” in Ref. 69 pp. 2-10–2-22 (unpublished).
82.
82.J. D. Lindl, “A strategy for determining the driver requirements for high-gain ICF implosions utilizing hydrodynamically equivalent capsules on the Nova laser,” Laser Program Annual Report, 1981, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-80/8I, pp. 2-49–2-57 (unpublished).
83.
83.Draft of Ad Hoc Experts Group on Fusion Report (October 1979), 70-ETG-28 (unpublished).
84.
84.E. M. Campbell, J. T. Hunt, E. S. Bliss, D. R. Speck, and R. P. Drake, “Nova experimental facility,” Rev. Sci. Instrum. 57, 2101 (1986).
85.
85.F. Ze, L. Suter, E. M. Campbell, R. L. Kauffman. and D. W. Phillion, “Results of the Novette implosion experiments,” Laser Program Annual Report 1983, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-83, pp. 4-21–4-30 (unpublished).
86.
86.L. J. Suter, “Analysis of Novette compression series,” in Ref. 85, pp. 4-30–4-48 (unpublished).
87.
87.D. W. Phillion and S. V. Weber, “Radiation drive scaling at 2ω and ω4,” in Ref. 85, pp. 4-7-4–21 (unpublished).
88.
88.Review of the Department of Energy’s Inertial Confinement Fusion Program (National Academy Press, Washington, DC, 1986).
89.
89.R. Kauffman, H. Kornblum, R. Turner, F. Ze, B. Lasinski, and R. A. Thiessen, “Nova holhlraum experiments,” Laser Program Annual Report, 1985, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-85, pp. 4-1–4-6 (unpublished).
90.
90.See National Technical Information Service Document No. DE93014373 [Laboratory Microfusion Capability Study: Phase II Report (U.S. Department of Energy, Washington, DC, DOE/DP-0017, 1993)]. Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
91.
91.R. L. Kauffman, F. Ze, L. J. Suter, R. P. Drake, W. G. Halsey, H. N. Kornblum, B. F. Lasinski, D. W. Phillion, and A. R. Thiessen, “Laser driven hohlraums,” Laser Program Annual Report, 1986/87, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-86/87, pp. 4-2–4-25 (unpublished).
92.
92.R. E. Turner, L. J. Suter, R. L. Kauffman, J. Z. Grens, and D. W. Phillion, “Results from the Symmetry-I experimental series on Nova,” in Ref. 91, pp. 4-25–4-34 (unpublished).
93.
93.J. D. Kilkenny and V. C. Rupert, “Preliminary Rayleigh-Taylor experiments on Nova,” in Ref. 91, pp. 4-64–4-89 (unpublished).
94.
94.D. H. Munro, “LASNEX shell stability modeling of the Nova Rayleigh-Taylor experiments,” in Ref. 91, pp. 2-82 to 2-90 (unpublished).
95.
95.L. J. Suter and R. E. Turner, “Analysis of pulse-shaped Nova implosions,” ICF Program Annual Report 1988/1989, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-116901-88-89, pp. 2-8–2-18 (unpublished).
96.
96.S. P. Hatchett, S. M. Lane, S. W. Haan, M. D. Cable, D. R. Kania, R. A. Lerche, and B. A. Remington, “High-density, pulse-shaped implosions,” in Ref. 95, pp. 2-19–2-27 (unpublished).
97.
97.C. J. Keane, D. Kania, B. A. Hammel, O. L. Landen, B. A. Remington L. J. Suter, and R. L. Turner, “High temperature implosion experiments on Nova,” Los Alamos National Laboratory 1991 Topical Conference: The Physics of Radiatively Driven ICF Targets, Lost Alamos National Laboratory, Los Alamos, NM, LA-CP-91-400, pp. 68–74 (unpublished).
98.
98.J. D. Lindl, “Progress on ignition physics for ICF and plans for a Nova Upgrade to demonstrate ignition and propagating burn by the year 2000,” Fusion to Light Surfing, edited by T. Katsouleas (Addison-Wesley, Redwood City, CA, 1991), p. 177.
99.
99.J. D. Lindl, “Progress on ignition physics for ICF and plans for a National Ignition Facility to demonstrate ignition and propagating burn,” ICF Quart. Rep. 3, 9 (1993), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-113687-93-1 (unpublished).
100.
100.See National Technical Information Service Document No. DE94010835 (Precision Nova ICF Quart. Rep. 4, edited by H. T. Powell, Lawrence Livermore National Laboratory, UCRL-LR-105821-94-1, 1994). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
101.
101.See National Technical Information Service Document No. SAND792454 (M. M. Widner, “Fuel energy balance studies of pellet ignition requirements,” Sandia National Laboratories, SAND-79-2454). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
102.
102.R. C. Kirkpatrick and J. A. Wheeler, “The physics of DT ignition in small fusion targets,” Nucl. Fusion 21, 389 (1981).
103.
103.L. Spitzer, Physics of Fully Ionized Gases, 2nd Rev. ed. (Interscience, New York, 1967), p. 145.
104.
104.M. D. Rosen (private communication, 1988).
105.
105.S. P. Hatchett and J. D. Lindl, “Design studies of single-shell ICF capsules for Nova,” in Ref. 85, pp. 2-28–2-35 (unpublished).
106.
106.J. W. Bond, K. M. Watson, and J. A. Welch, Atomic Theory of Gas Dynamics (Addison-Wesley, Redwood City, CA, 1965).
107.
107.J. Nuckolls, J. Lindl, W. Mead, A. Thiessen, L. Wood, and G. B. Zimmerman, “Laser-driven implosion of hollow pellets,” Controlled Nuclear Fusion Research 1974 (International Atomic Energy Agency, Vienna, 1975), Vol. 3, pp. 535–542.
108.
108.E. M. Campbell, J. D. Kilkenny, D. R. Kania, P. M. Young, S. M. Lane, S. G. Clendinning, D. W. Phillion, C. B. Darrow, R. L. Kauffman, I. D. Lindl, L. J. Suter, S. P. Hatchett, W. L. Kruer, D. H. Munro, S. W. Haan, R. J. Wallace, C. W. Hatcher, R. S. Upadhye, D. T. Kyrazis, G. L. Hermes, D. R. Speck, C. Bibeau, R. B. Ehrlich, D. L. Matthews, B. J. MacGowan, M. D. Rosen, and M. S. Maxon, “Recent results from the Nova Program at LLNL,” Laser Part. Beams 9, 209 (1991).
109.
109.C. B. Darrow, “Drive and laser characterization for shaped-pulse hohlraum interactions,” in Ref. 95 pp. 171–179 (unpublished).
110.
110.C. Darrow, L. Suter, H. Kornblum, D. W Phillion, R. Thiessen, and R. L. Kauffman, “Recent indirect drive experiments on Nova,” Los Alamos National Laboratory 1991 Topical Conference: The Physics of Radiatively Driven ICF Targets, Los Alamos National Laboratory, Los Alamos, NM, LA-CP-91-400, pp. 25–33 1991 (unpublished).
111.
111.B. A. Hammel, C. J. Keane, M. D. Cable, D. R. Kania, J. D. Kilkenny, R. W. Lee, and R. Pasha, “X-ray spectroscopic measurements of high densities and temperatures from indirectly driven inertial fusion capsules,” Phys. Rev. Lett. 70, 1263 (1993).
112.
112.B. A. Hammel, C. J. Keane, T. R. Dittrich, D. R. Kania, J. D. Kilkenny, R. W. Lee, and W. K. Levedahl, “K- and L-shell x-ray spectroscopic measurements and pusher dopants in indirectly driven ICF implosions,” J. Quant. Spectrosc. Radiat. Transfer 51, 113 (1994).
113.
113.H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), pp. 63–101.
114.
114.R. L. McCrory and R. L. Morse, “Dependence of laser-driven compression efficiency on wavelength,” Phys. Rev. Lett. 38, 544 (1977).
115.
115.C. E. Max, J. D. Lindl, and W. C. Mead, “Effect of symmetry requirements on the wavelength scaling of directiy driven laser fusion implosions,” Nucl. Fusion 23, 131 (1983).
116.
116.S. M. Pollaine and J. D. Lindl, “Effect of capsule aspect ratio on hydro-dynamic efficiency,” Nucl. Fusion 26, 1719 (1986).
117.
117.S. P. Hatchett and M. D. Rosen, “Analysis of radiation-driven rocket efficiency,” Laser Program Annual Report 1981/1982, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-81/82, pp. 2-15–2-20 (unpublished).
118.
118.M. D. Rosen and J. D. Lindl, “Model for gain vs laser energy for x-ray driven targets,” in Ref. 85 pp. 2-17–2-20 (unpublished).
119.
119.See National Technical Information Service Document No. DE92006882 (S. Hatchett, “Ablation gas dynamics of low-Z materials, illuminated by soft x-rays,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-108348, 1991). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
120.
120.J. D. Lindl, “Hydrodynamic and plasma stability limitations on the choice of laser wavelength for radiation driven ICF implosions,” in Ref. 85, pp. 2-40–2-46 (unpublished).
121.
121.M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic instability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007 (1990).
122.
122.See National Technical Information Service Document No. DE86002577 • (R. Lelevier, G. Lasher, and F. Bjorklund, “Effect of a Density Gradient on Taylor Instability"). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
123.
123.D. Munro, “Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients,” Phys. Rev. A 38, 1433 (1988).
124.
124.H. Takabe, K. Mima, L. Montierth, and R. L. Morse, “Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma,” Phys. Fluids 28, 3676 (1985).
125.
125.S. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett. 33, 761 (1974).
126.
126.S. G. Glendinning, S. Weber, P. Bell, L. DaSilva, S. Dixit, M. Henesian, D. Kania, J. Kilkenny, H. Powell, R. Wallace, and P. Wegner, “Laser driven planar Rayleigh-Taylor instability experiments,” Phys. Rev. Lett. 69, 1201 (1992).
127.
127.M. Katayama, H. Azechi, A. Nishiguchi, M. Nakai, and S. Nakai, “Observation of hydrodynamic instabilities in planar foils accelerated with amplified spontaneous emission,” ILE Quarterly Progress Report-92, No. 43 (Institute of Laser Engineering, Osaka University Press, Osaka, Japan, 1992), p. 27.
128.
128.J. Kilkenny, “Experimental results on hydrodynamic instabilities in laser accelerated planar packages,” Phys. Fluids B 2, 1400 (1990).
129.
129.B. A. Remington, S. W. Haan, S. G. Glendinning, J. D. Kilkenny, D. H. Munro, and R. J. Wallace, “Large growth Rayleigh-Taylor experiments using shaped laser pulses,” Phys. Rev. Lett. 67, 3259 (1991).
130.
130.B. A. Remington, S. V. Weber, S. W. Haan, J. D. Kilkenny, S. G. Glendinning, R. J. Wallace, W. H. Goldstein, B. G. Wilson, and J. K. Nash, “Laser driven hydrodynamic instability experiments,” Phys. Fluids B 5, 2589 (1993).
131.
131.S. Haan, “The onset of non-linear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes,” Phys. Rev. A 39, 5812 (1989).
132.
132.D. Layzer, “On the stability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).
133.
133.S. Haan, “Weakly nonlinear hydrodynamic instabilities in inertial fusion,” Phys. Fluids B 3, 2349 (1991).
134.
134.B. A. Remington, S. V. Weber, M. M. Marinak, S. W. Haan, J. D. Kilkenny, R. Wallace, and G. Dimonte, “Multimode Rayleigh-Taylor experiments on Nova,” Phys. Rev. Lett. 73, 545 (1994).
135.
135.T. Dittrich, B. A. Hammel, C. J. Keane, R. McEachern, R. E. Turner, S. W. Haan, and L. J. Suter, “Diagnosis of pusher-fuel mix in indirectly driven Nova implosions,” Phys. Rev. Lett. 73, 2224 (1994).
136.
136.C. J. Keane, O. L. Landen, B. A. Hammel, T. R. Dittrich, S. P. Langer, and D. H. Munro, “Nova high growth factor implosion experiments: Modeling and analysis,” Bull. Am. Phys. Soc. 39, 1686 (1994).
137.
137.O. L. Landen, B. A. Hammel, C. J. Keane, T. J. Murphy, R. G. Hay, R. A. Lerche, M. B. Nelson, M. D. Cable, J. D. Kilkenny, T. R. Dittrich, W. K. Levedahl, L. Suter, S. W. Haan, S. P. Hatchett, R. McEachern, R. Cook, and R. J. Wallace, “High growth-factor ICF implosions,” Bull. Am. Phys. Soc. 39, 1686 (1994).
138.
138.T. Endo, K. Shigemori, H. Azechi, A. Nishiguchi, K. Mima, M. Sato, M. Nakai, S. Nakaji, N. Miyanaga, S. Matsuoka, A. Ando, K. Tanaka, and S. Nakai, “Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils,” Phys. Rev. Lett. 74, 3608 (1995).
139.
139.R. C. Cook, T. P. Bernat, G. Collins. S. A. Letts, R. McEachern, G. E. Overturf, and R. E. Turner, “Production and characterization of ICF capsules,” Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1993), Vol. 3, p. 449.
140.
140.See National Technical Information Service Document No. DE 95000314 (R. J. Wallace, R. L. McEachern, and W. W. Wilcox, “Laser ablation machining of ICF capsules,” ICF Quart. Rep. 4, 79 (1994), Lawrence Livermore National Laboratory, UCRL-LR-105821-94-3). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
141.
141.Ya. B. Zel’dovich and Yu. P. Razier, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966), Sec. 11.10.
142.
142.R. E. Marshak, “Effect of radiation on shock wave behavior,” Phys. Fluids 1, 24 (1958).
143.
143.M. D. Rosen, “Scaling law for radiation temperature,” in Ref. 67 pp. 2-37–2-46 (unpublished).
144.
144.N. Kaiser, J. Meyer-ter-Vehn, and R. Sigel, “The x-ray driven heating wave,” Phys. Fluids B 1, 1747 (1989).
145.
145.R. Pakula, and R. Sigel, “Self-similar expansion of dense matter due to heat transfer by nonlinear conduction,” Phys. Fluids 28, 232 (1985).
146.
146.A. Bar Shalom, J. Oreg, W. H. Goldstein, D. Shvarts, and A. Zigler, “Super-transition-arrays: A model for the spectral analysis of hot, dense plasma,” Phys. Rev. A 40, 3183 (1989).
147.
147.J. D. Lindl, “Nova Upgrade has focused on target symmetry and hohl-raum plasma conditions,” presentation to NAS ICF Review Committee, Lawrence Livermore National Laboratory, Livermore, CA, XDIV-90-0045, 1990 (unpublished).
148.
148.M. Murakami and J. Meyer-ter-Vehn, “Indirectly driven target for inertial confinement fusion,” Nucl. Fusion 31, 1315 (1991).
149.
149.R. Kauffman, L. Suter, C. B. Darrow, J. D. Kilkenny, H. N. Kornblum, D. S. Montgomery, D. W. Phillion, M. D. Rosen, A. R. Thiessen, R. J. Wallace, and F. Ze, “High temperatures in inertial confinement fusion radiation cavities heated with 0.35 μm light,” Phys. Rev. Lett. 73, 2320 (1994).
150.
150.H. N. Kronblum and R. L. Kauffman, “Measurement of 0.1–3-keV x-rays from laser plasmas,” Rev. Sci. Instrum. 57, 2179 (1986).
151.
151.M. D. Rosen, “Scaling laws for specialized hohlraums,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-119916, 1994 (unpublished).
152.
152.See National Technical Information Service Document No. DE95000314 (T. J. Murphy and P. A. Amendt, “X-ray flux symmetry control in advanced Nova holhraum,” ICF Quart. Rep. 4, 101 (1994) Lawrence Livermore National Laboratory, UCRL-LR-105821-94-3). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
153.
153.R. Sigel, G. D. Tsakiris, F. Lavarenne, J. Massen, R. Fedosejevs, J. Meyer-ter-Vehn, M. Murakami, K. Eidman, S. Witkowski, H. Nishimura, Y. Kato, H. Takabe, T. Endo, K. Kondo, H. Shiraga, S. Sakabe, T. Jitsuno, M. Takagi, C. Yamanaka, and S. Nakai, “Experimental observation of laser-induced radiation heat waves,” Phys. Rev. Lett. 65, 587 (1990).
154.
154.J. Porter and A. R. Thiessen, “Summary of albedo experiment,” Lawrence Livermore National Laboratory, Livermore, CA, CLY-92-059, 1992 (unpublished).
155.
155.See National Technical Information Service Document No. DE95011969 (J. L. Porter, T. J. Orzechowski, M. D. Rosen, A. R. Thiessen, L. J. Suter, and J. T. Larsen, “The albedo of gold at high temperatures,” ICF Quart. Rep. 4, 125 (1994);
155.Lawrence Livermore National Laboratory, UCRL-LR-105821-94-4). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
156.
156.See National Technical Information Service Document No. DE88014097, (R. L. Kauffman, “X-ray conversion efficiency,” Laser Program Annual Report 1986, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-86). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
157.
157.P. D. Goldstone, S. R. Goldman, W. C. Mead, J. A. Cobble, G. Stradling, R. H. Day, A. Hauer, M. C. Richardson, R. S. Marjoribanks, P. A. Jaan-imagi, R. L. Keck, F. J. Marshall, W. Seka, O. Barnouin, B. Yaakobi, and S. A. Letzring, “Dynamics of high-Z plasmas produced by a short-wavelength laser,” Phys. Rev. Lett. 59, 56 (1987).
158.
158.M. D. Rosen, “Evidence of a laser intensity threshold for the onset of inhibited electron transport,” Comments Plas. Phys. 8, 165 (1984).
159.
159.J. Ze, R. Kauffman, J. Kilkenny, S. Langer, D. More, L. Powers, D. Ress, M. Rosen, L. Suter, R. Wallace, and J. Wiedwald, “Investigation of x-ray conversion efficiency in hohlraums,” 1993 Topical Conference on Physics of Radiatively Driven ICF Targets, 1993, Monterey, California, to appear in Def. Res. Rev. (unpublished).
160.
160.F. Ze, R. L. Kauffman, J. D. Kilkenny, J. Wiedwald, P. M. Bell, R. Hanks, J. Stewart, D. Dean, J. Bower, and R. Wallace, “A new multichannel soft x-ray framing camera for fusion experiments,” Rev. Sci. Instrum. 63, 5124 (1992).
161.
161.R. Sigel, R. Pakula, S. Sakabe, and G. D. Tsakiris, “X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light III Comparison of the experimental results with theoretical predictions for x-ray confinement,” Phys. Rev. A 38, 5779 (1988).
162.
162.L. J. Suter (private communication, 1994).
163.
163.See National Technical Information Service Document No. DE95011969, (D. S. Kershaw, M. K. Prasad, and M. J. Shaw, “Three-dimensional, unstructured-mesh Eulerian hydrodynamics with upwind, discontinuous, finite-element method,” ICF Quart. Rep. 4, 160 (1994), Lawrence Livermore National Laboratory, UCRL-LR-105821-94-4). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
164.
164.J. Stamper, E. A. McLean, and B. H. Ripin, “Spontaneous magnetic fields in laser-produced plasmas by Faraday rotation,” Phys. Rev. Lett. 40, 1177 (1978).
165.
165.D. Ress, L. V. Powers, F. Ze, L. J. Powers, and R. J. Wallace, “Soft x-ray emission spatial profiles in laser-driven hohlraums,” Bull. Am. Phys. Soc 39, 1610 (1994).
166.
166.S. I. Braginskii, “Transport processes in a plasma,” Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.
167.
167.J. R. Sanmartin, “Electron heat conduction in ICF targets,” Nuclear Fusion by Inertial Confinement, edited by G. Velarde, Y. Ronen, and J. M. Martinez-Val (CRC, Boca Raton, FL, 1993), Chap. 7.
168.
168.E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker-Planck equation,” Phys. Fluids 29, 1029 (1986).
169.
169.See National Technical Information Service Document No. DE88016329 (P. D. Nielsen and G. B. Zimmerman, “Treatment of θ-directed magnetic fields in LASNEX, UCRL-53123, 1981). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
170.
170.J. Hammer (private communication, 1994).
171.
171.S. W. Haan, “Radiation transport between concentric spheres,” Lawrence Livermore National Laboratory, Livermore, CA, COPD 83–64, 1983 (unpublished).
172.
172.A. Caruso and C. Strangio, “The quality of the illumination for a spherical cavity enclosed in a radiating cavity,” Jpn. J. Appl. Phys. 30, 1095 (1991).
173.
173.L. J. Suter, “Cross talk between modes in cylindrical hohlraums,” in Ref. 89, pp. 30–31 (unpublished).
174.
174.S. M. Pollaine (private communication. 1992).
175.
175.See National Technical Information Service Document No. DE86005297 (J. W.-K. Mark, “Reduction of deposition asymmetries in directly driven ion beam and laser targets,” 1984 Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-84, 1984, pp. 3-24–3-28). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
176.
176.E. Minguez, “Radiation transport in ICF targets,” in Ref. 16, Chap. 8.
177.
177.J. A. Fleck, Jr. and J. D. Cummings, “An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport,” J. Comput. Phys. 8, 313 (1971).
178.
178.G. C. Pomraning, Equations of Radiation Hydrodynamics (Pergamon, New York, 1973), Chap. 5, Sec. 5.
179.
179.G. C. Pomraning, in Ref. 178, Sec. 6.
180.
180.R. C. Kirkpatrick, J. E. Tabor, E. L. Lindman, and A. J. Cooper, “Indirect solar loading of waste heat radiators,” Proceedings of Space 88, edited by S. W. Johnson and J. P. Wetzel (American Society of Civil Engineers, New York, 1988), pp. 964–973.
181.
181.M. Murakami and J. Meyer-ter-Vehn, “Radiation symmetrization in indirectly driven ICF targets,” J. Nucl. Fusion 31, 1333 (1991).
182.
182.J. D. Lindl, “Introduction to hohlraums,” LLNL ICF Program (ICFAC/ DP), Lawrence Livermore National Laboratory, Livermore, CA, CLY-92-094-VOL-l, pp. 5–54 (1992) (unpublished).
183.
183.M. Tabak, “Symmetry properties of reactor scale hohlraums,” in Ref. 91, pp. 2-169–2-182 (unpublished).
184.
184.J. Dawson, P. Kaw, and B. Green, “Optical absorption and expansion of laser-produced plasmas,” Phys. Fluids 12, 875 (1969).
185.
185.J. D. Lindl, “Apollo targets for Nova and KrF-driven reactors,” in Ref. 64, pp. 2-77–2-88 (unpublished).
186.
186.A. R. Thiessen, “Some aspects of LMF hohlraum design,” 1988 Laser Program Annual Report: Target Design, Lawrence Livermore National Laboratory, Livermore, CA, XDIV-90–0054 (unpublished).
187.
187.S. Pollaine, “Nova Upgrade symmetry design,” 1990/1991 LLNL Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-116901-90/91, pp. 214–234 (unpublished).
188.
188.S. Pollaine, “Helium-filled hohlraum for foam-ablator capsules,” in Ref. 186, pp. 246–259 (unpublished).
189.
189.L. J. Suter, A. A. Hauer, L. V. Powers, D. B. Ress, N. Delameter, W. W. Hsing, O. L. Landon, A. R. Thiessen, and R. E. Turner, “Modeling and interpretation of Nova’s symmetry scaling data base,” Phys. Rev. Lett. 73, 2328 (1994).
190.
190.S. W. Haan, “Target design for national ignition facility,” Presentation to ICFAC, 16–18 December 1992, Lawrence Livermore National Laboratory, Livermore, CA, CLY-92-094-Vol. 2, pp. 5–40 (unpublished).
191.
191.J. D. Lindl, “The physics of high gain ICF capsules is demanding but consistent with the Nova and Halite/Centurion data base,” Presentation to DOE LMF Review, Lawrence Livermore National Laboratory, Livermore, CA, XDIV-88-0062, 1988 (unpublished).
192.
192.A. A. Hauer, “X-ray driven implosions in laser heated hohlraums,” Laser Plasma Interactions, edited by M. Hooper and A. Cairns (Redwood Burn, Trowbridge, England, 1995), Vol. 5, pp. 5–24.
193.
193.J. D. Kilkenny, P. Bell, R. Hanks, G. Power, R. E. Turner, and J. Wied-wald, “High-speed gated x-ray imagers,” Rev. Sci. Instrum. 59, 1793 (1988).
194.
194.D. Ress, R. A. Lerche, and L. DaSilva, “Demonstration of an x-ray ring-aperture microscope for inertial confinement fusion experiments,” Appl. Phys. Lett. 60, 410 (1992).
195.
195.N. D. Delameter, E. L. Lindman, G. Magelssen, A. A. Hauer, J. B. Moore, and M. A. Salazar, “Symmetry experiments in gas-filled hohlraums at Nova,” Bull. Am. Phys. Soc. 39, 1610 (1994).
196.
196.L. J. Suter (private communication, 1995).
197.
197.R. W. Short, R. Bingham, and E. A. Williams, “Filamentation of laser light in flowing plasmas,” Phys. Fluids 25, 2302 (1982);
197.H. Rose (private communication, 1994);
197.D. Hinkel (private communicadon, 1995).
198.
198.L. V. Powers, D. B. Ress, L. J. Suter, and F. Ze, “LASNEX modeling of soft x-ray emission profiles in Nova Hohraums,” in Ref. 159, (unpublished).
199.
199.P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, and L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785 (1995).
200.
200.P. Amendt (private communication, 1995).
201.
201.L. J. Suter, “Diagnosing capsule drive symmetry with a re-emission ball,” Laser Program Annual Report, 1984, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-84, pp. 2-19–2-26 (unpublished).
202.
202.N. D. Delameter, G. R. Magelssen, A. A. Hauer, L. J. Suter, and R. E. Turner, “Re-emission ball technique for symmetry measurements,” Bull. Am. Phys. Soc. 38, 1885 (1993).
203.
203.M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), Sec. 3.2.1.
204.
204.M. Cable, S. E. Hatchett, J. A. Caird, J. D. Kilkenny, H. N. Kornblum, S. M. Lane, C. W. Laumann, R. A. Lerche, T. J. Murphy, J. Murray, M. B. Nelson, D. W. Phillion, H. T. Powell, and D. B. Ress, “Indirect driven, high convergence inertial confinement fusion implosions,” Phys. Rev. Lett. 73, 2316 (1994).
205.
205.M. B. Nelson, M. Cable, “LaNSA: A large neutron scintillator array for neutron spectroscopy at Nova,” Rev. Sci. Instrum. 63, 4874 (1992).
206.
206.E. G. Gamalii, S. Yu. Guskov, O. N. Krokhin, and V. B. Rozanov, “Possibility of determining the characteristics of laser plasma by measuring the neutrons of the DT reaction,” JETP Lett. 21, 70 (1975).
207.
207.M. D. Cable and S. P. Hatchett, “Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers,” J. Appl. Phys. 62, 2233 (1987).
208.
208.J. D. Lindl, “LMF hohlraum design is based on experience gained from Nova and Halite/Centurion experiments,” presentation to DOE LMF review, Lawrence Livermore National Laboratory, Livermore, CA, XDIV-88–0060, 1988 (unpublished).
209.
209.J. C. Fernandez, J. A. Cobble, C. C. Gomez, G. S. Schmidt, and D. A. Montgomery, “Hohlraum plasma dynamics experiments on the Nova laser,” in Ref. 190, pp. 61-84 (unpublished).
210.
210.K. Nishikawa and C. S. Liu, Advances in Plasma Physics, edited by A. Simon and W. B. Thompson (Wiley, New York, 1976), Vol. 6, pp. 3–82.
211.
211.D. W. Phillion, W. L. Kxuer, and V. C. Rupert, “Brillouin scatter in laser-produced plasmas,” Phys. Rev. Lett. 39, 1529 (1977).
212.
212.C. E. Clayton, C. Joshi, A. Yasuda, and F. F. Chen, “Dependence of stimulated Brillouin scattering on target material and / number,” Phys. Fluids 24, 2312 (1981).
213.
213.R. L. Berger, B. F. Lasinski, T. B. Kaiser, E. A. Williams, A. B. Langdon, and B. I. Cohen, “Theory and three-dimensional simulation of light filamentation in laser-produced plasma,” Phys. Fluids B 5, 2258 (1993).
214.
214.R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan, B. I. Cohen, C. H. Still, and E. A. Williams, “The influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in fila-mentated laser light,” Phys. Rev. Lett. 75, 1078 (1995).
215.
215.O. Willi, T. Afshar-rad, and S. Coe, “Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques,” Phys. Fluids B 2, 1318 (1990).
216.
216.C. Labaune, S. Baton, and T. Jalinaud, H. Baldis, and D. Pesme, “Filamentation in long scale length plasmas: experimental evidence and effects of laser spatial incoherence,” Phys. Fluids B 4, 2224 (1992).
217.
217.W. Seka, R. E. Bahr, R. W. Short, A. Simon, R. S. Craxton, D. S. Montgomery, and A. E. Rubenchik, “Nonlinear laser-matter interaction processes in long-scale-length plasmas,” Phys. Fluids B 4, 2232 (1992).
218.
218.B. J. MacGowan (private communication, 1995).
219.
219.L. V. Powers, R. E. Turner, R. L. Kauffman, R. L. Berger, P. Amendt, C. A. Back, T. P. Bernat, S. N. Dixit, D. Eimerl, J. A. Harte, M. A. Henesian, D. H. Kalantar, B. F. Lasinski, B. J. MacGowan, D. S. Montgomery, D. H. Munro, D. M. Pennington, T. D. Shepard, G. F. Stone, L. J. Suter, and E. A. Williams, “Low stimulated Brillouin backscatter observed from large, hot plasmas in gas-filled hohlraums,” Phys. Rev. Lett. 74, 2957 (1995).
220.
220.J. C. Fernandez, J. A. Cobble, W. W. Hsing, B. H. Wilde, B. H. Failor, R. G. Hockaday, P. L. Gobby, D. A. Montgomery, H. N. Kornblum, and J. L. Miller, “Laser-plasma instability in hohlraums,” submitted to Phys. Rev. Lett.
221.
221.C. A. Back, “Measurements of electron temperature by spectroscopy in hohlraum targets,” submitted to Phys. Rev. Lett.
222.
222.S. C. Wilks, W. L. Kruer, J. Denavit, K. Estabrook, D. E. Hinkel, D. Kalantar, A. B. Langdon, B. MacGowan, D. Montgomery, J. Moody, and E. A. Williams, “Nonlinear theory and simulations of stimulated Brillouin backscatter in multi-species plasmas,” Phys. Rev. Lett. 74, 5048 (1995).
223.
223.M. D. Rosen, “Electron transport and preheat,” Laser Program Annual Report—79, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-79, pp. 5-91–5-96 (unpublished).
224.
224.M. D. Rosen, R. H. Price, E. M. Campbell, D. W. Phillion, K. G. Estabrook, B. F. Lasinski, and J. M. Auerbach, S. P. Obenshain, E. A. McLean, R. R. Whitlock, and B. H. Ripin, “Analysis of laser-plasma coupling and hydrodynamic phenomena in long-pulse, long-scale-length plasmas,” Phys Rev. A 36, 247 (1987).
225.
225.M. D. Rosen, “Investigations of IF target physics: Preheat, shock, and scaling experiments with half-Cairn hohlraums,” in Ref. 69 pp. 5-91–5-96 (unpublished).
226.
226.D. W. Phillion and M. D. Rosen, “Radiation-drive scaling at and in Ref. 85, pp. 4-7–4-21 (unpublished).
227.
227.J. D. Lindl, “Tolerance of high-gain ICF capsules to preheat by high energy electrons,” Laser Program Annual Report, 1984, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-84, pp. 2-38–2-39 (unpublished).
228.
228.R. McCrory and C Verdon, Short Wavelength Single Shell Direct Drive Pellet Designs, edited by S. Skupsky (U.S. Department of Energy, Washington, DC, 1985), Vol. 23, pp. 125–140.
229.
229.R. McCrory and C. Verdon, “ICF computer simulations,” Computer Applications in Plasma Science and Engineering, edited by A. Drobat (Springer-Verlag, Berlin, 1991), pp. 291–325.
230.
230.See National Technical Information Service Document Nos. DE95017671 through DE95017673 and DE95017676 through DE95017700 (J. A. Paisner, E. M. Campbell, and W. J. Hogan, The National Ignition Facility Project, UCRL-JC-117397 and UCRL-PROP-117093, May 1994). Copies may be obtained from the National Technical Information Service, Springfield. VA 22161.
231.
231.See National Technical Information Service Document No. DE940I6700 (J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. W. Sawicki, J. B. Trenholme, and W. Williams, “Laser Design Basis for the National Ignition Facility,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-117399, 1994). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
232.
232.B. M. Van Wonterghem, J. R. Murray, D. R. Speck, and J. H. Campbell, “Performance of the NIF prototype beamlet,” Fusion Technol. 26, 702 (1994).
233.
233.C. E. Barker. B. M. Van Wonterghem, D. R. Speck, B. W. Woods, D. F. Browning, S. C. Burkhart, W. C. Behrendt, J. R. Murray, J. H. Campbell, and I. C. Smith, “Third harmonic performance of a large aperture, multipass Nd-glass laser,” Advanced Solid State Lasers Conference, Memphis, TN, 1995, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-JC-118196 (unpublished);
233.Advanced Solid-State Lasers Proceedings, edited by B. H. T. Chai and S. A. Payne (Optical Society of America. Washington, DC, 1995), Vol. 24, pp. 204–206.
234.
234.S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett. 9,417(1994).
235.
235.See National Technical Information Service Document No. DE95011969 (S. N. Dixit, I. M. Thomas, M. Rushford, R. Merrill, M. D. Perry, H. T. Powell, and K. A. Nugent, “Kinoform phase plates for tailoring focal plane intensity profiles,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-105821-94-4). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
236.
236.S. W. Haan, “Design of targets for the national ignition facility,” ICF Quart. Rep. 3, 71 (1992), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-113687-93-1 (unpublished).
237.
237.S. W. Haan and S. M. Pollaine, “Target design for laser-driven thermonuclear ignition,” LLNL Research Monthly 93–1 Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50000-93-1, 1993, p. 5 (unpublished).
238.
238.S. W. Haan, S. M. Pollaine, J. D. Lindl, L. J. Suter, R. L. Berger, L. V. Powers, W. E. Alley, P. A. Amendt, J. A. Futterman, W. K. Levedahl, M. D. Rosen, D. P. Rowley, R. A. Sacks, A. I. Shestakov, G. L. Strobel, M. Tabak, S. V. Weber, G. B. Zimmerman, W. J. Krauser, D. C. Wilson, S. Coggeshall, D. B. Harris, N. M. Hoffman, and B. H. Wilde, “Design and modeling of ignition targets for the National Ignition Facility,” Phys. Plasmas 2, 2480 (1995).
239.
239.See National Technical Information Service Document No. DE95017708 (D. S. Kershaw, “Flux limiting in nature’s own way,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-78378, 1976). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
240.
240.R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059 (1988).
241.
241.See National Technical Information Service Document No. UCRL-52276 (W. A. Lokke and W. H. Grasberger, “XSNQ-U: A Non-LTE emission and absorption coefficient subroutine,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-52276, 1977). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
242.
242.E. G. Corman, W. B. Loewe, G. E. Cooper, and A. M. Winslow, “Multi-group diffusion of energetic charged particles,” Nucl. Fusion 15, 377 (1975).
243.
243.S. P. Hatchett (private communication, 1993).
244.
244.See National Technical Information Service Document No. DE91009750 (G. B. Zimmerman, “Recent developments in Monte-Carlo techniques,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-105616, 1990). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
245.
245.J. K. Hoffer and L. R. Foreman, “Radioactively induced sublimation in solid tritium,” Phys. Rev. Lett. 60, 1310 (1988).
246.
246.See National Technical Information Service Document No. DE91017920 (T. P. Bernat, E. R. Mapoles, and J. J. Sanchez, “Temperature and age-dependence of redistribution rates of frozen deuterium-tritium,” ICF Quart. Rep. 1, 443 (1991), Lawrence Livermore National Laboratory, UCRL-LR-105821-91-2). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
247.
247.J. K. Hofer, L. R. Foreman, E. R. Mapoles, and J. D. Simpson, “Forming a uniform shell of solid DT fusion fuel by the beta-layering process,” Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 3, p. 443.
248.
248.G. W. Collins (private coummunication, 1995).
249.
249.K. Kim, L. Mok, M. J. Erlenborn, and T. Bernat, “Non-contact thermal gradient method for fabrication of uniform cryogenic inertial fusion targets,” J. Vac. Sci. Technol. A 3, 1196 (1985).
250.
250.R. A. Sacks and D. H. Darling, “Direct drive cryogenic ICF capsules employing D-T wetted foam,” Nucl. Fusion 27, 447 (1987).
251.
251.See National Technical Information Service Document No. DE91017542 (S. W. Haan, “Hydrodynamic instabilities on ICF capsules,” Lawrence Livermore National Laboratory, Livermore, CA (UCRL-JC-107592), to be published in Lecture Series on Inertial Fusion, Department of Astro-physical Sciences, Princeton University, 1994). Copies may be obtained from the National Technical Information Service, Springfield, VA 22161.
252.
252.J. P. Dahlburg, “Three dimensional simulations of the ablative Rayleigh-Taylor instability,” Bull. Am. Phys. Soc. 39, 1576 (1994).
253.
253.M. M. Marinak, B. A. Remington, S. V. Weber, R. E. Tipton, S. W. Haan, K. Budil, O. L. Landen, J. D. Kilkenny, and R. Wallace, “Three-dimensional single-mode Rayleigh-Taylor experiments on Nova,” UCRL-JC-120191, submitted to Phys. Rev. Lett.
254.
254.R. C. Kirkpatrick and C. A. Wingate (private communication, 1980);
254.D. S. Bailey (private communication, 1981);
254.D. H. Munro and G. B. Zimmerman (private communication, 1993).
255.
255.R. O. Bangerter. “Radiation-driven targets for heavy-ion fusion,” in Ref. 67, pp. 2-28–2-30 (unpublished).
256.
256.D. Gardes, R. Bimbot, M. F. Rivet, A. Servajean, C. Heurier, D. Hong, C. Deutsch, and G. Maynard, “Stopping of energetic sulfur and bromine ions in dense hydrogen plasma,” Part. Accel. 37–38, 361 (1992).
257.
257.D. W. Hewett, W. L. Kruer, and R. O. Bangerter, “Corona plasma instabilities in heavy ion fusion targets,” Nucl. Fusion 31, 431 (1991).
258.
258.R. O. Bangerter and J. D. Lindl, “Gain calculation for radiatively driven ion and laser targets,” in Ref. 91, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-86/87, pp. 2-160–2-68 (unpublished).
259.
259.D. D.-M. Ho (private communication, 1995).
260.
260.M. Basko and J. Meyer-Ter-Vehn, “Hohlraum target for heavy ion inertial fusion,” Nucl. Fusion 33, 601 (1993).
261.
261.A. B. Langdon, “Reactor chamber propagation of heavy ion beams,” Part. Accel. 37–38, 175 (1992).
262.
262.C. Olson, D. Hinshelwood, R. Hubbard, M. Lampe, J. Neri, P. Ottinger, J. Poukey, D. Rose, S. Slinker, S. Stephanakis, D. Welch, and F. Young, “Physics of gas breakdown for ion beam transport in gas,” Proceedings of the International Symposium on Heavy Ion Inertial Fusion, edited by S. Atzeni and R. A. Ricci, Nuovo Cimento A 106, 1705 (1993).
263.
263.W. F. Krupke, “Solid state laser driver for an ICF reactor,” Fusion Technol. 15, 377 (1989).
264.
264.C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode-pumped solid-state laser driver for inertial fusion energy,” submitted to Nucl. Fusion.
265.
265.W. R. Meier, R. Bieri, and M. Monsler, Osiris and Sombrero Inertial Fusion Power Plant Designs Final Report (U.S. Department of Energy, Washington, DC, WJSA-92–01, DOE/ER/54100, 1992);
265.also see W. R. Meier, R. Bieri, M. Monsler, C. Hendricks, P. Layboume, K. Shillito, S. Ghose, L. Goldman, K. Auclair, C. Pang, R. Bourque, L. Stewart, E. Bowles, E. Hubbard, C. Von Rosenberg, Jr., M. McGeoch, I. Sviato-slavsky, R. Peterson, M. Sawan, H. Khater, L. Wittenberg, G. Kulcinski, G. Moses, E. Mogahed, J. MacFarlane, S. Rutledge, S. Humphries, Jr., and E. Cheng, “Results of inertial fusion reactor design studies: Osiris and Sombrero,” Proceedings of the 14th International Conference on Plasma Physics and Controlled Fusion Research 1992, Würzburg, Germany (International Atomic Energy Agency, Vienna, 1993), Vol. 3, p. 339.
266.
266.L. M. Waganer, D. E. Driemeyer, and V. D. Lee, Inertial Fusion Energy Reactor Design Studies (McDonnell Douglas Aerospace, St. Louis, MO, U.S. Department of Energy, Washington, DC, 1992).
http://aip.metastore.ingenta.com/content/aip/journal/pop/2/11/10.1063/1.871025
Loading
/content/aip/journal/pop/2/11/10.1063/1.871025
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/2/11/10.1063/1.871025
1995-11-01
2014-11-26
Loading

Full text loading...

true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain
http://aip.metastore.ingenta.com/content/aip/journal/pop/2/11/10.1063/1.871025
10.1063/1.871025
SEARCH_EXPAND_ITEM