1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Manipulation of the magnetron orbit of a positron cloud in a Penning trap
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/1/10.1063/1.4789880
1.
1. M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, V. Filippini, K. S. Fine, A. Fontana, M. C. Fujiwara, R. Funakoshi, P. Genova, J. S. Hangst, R. S. Hayano, M. H. Holzscheiter, L. V. Jørgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. L. Rizzini, M. Macrí, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T. L. Watson, and D. P. van der Werf (ATHENA Collaboration), Nature 419, 456 (2002).
http://dx.doi.org/10.1038/nature01096
2.
2. G. Gabrielse, N. S. Bowden, P. Oxley, A. Speck, C. H. Storry, J. N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T. W. Hänsch, and E. A. Hessels (ATRAP Collaboration), Phys. Rev. Lett. 89, 233401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.233401
3.
3. M. H. Holzscheiter, M. Charlton, and M. M. Nieto, Phys. Rep. 402, 1 (2004).
http://dx.doi.org/10.1016/j.physrep.2004.08.002
4.
4. A. G. Marshall, Int. J. Mass Spectrom. 200, 331 (2000).
http://dx.doi.org/10.1016/S1387-3806(00)00324-9
5.
5. L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.233
6.
6. D. H. E. Dubin and T. M. O'Neil, Rev. Mod. Phys. 71, 87 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.87
7.
7. X.-P. Huang, F. Anderegg, E. M. Hollmann, C. F. Driscoll, and T. M. ONeil, Phys. Rev. Lett. 78, 875 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.875
8.
8. F. Anderegg, E. M. Hollmann, and C. F. Driscoll, Phys. Rev. Lett. 81, 4875 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4875
9.
9. R. G. Greaves and C. M. Surko, Phys. Rev. Lett. 85, 1883 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1883
10.
10. J. R. Danielson and C. M. Surko, Phys. Rev. Lett. 94, 035001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.035001
11.
11. J. R. Danielson, C. M. Surko, and T. M. O'Neil, Phys. Rev. Lett. 99, 135005 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.135005
12.
12. R. G. Greaves and J. M. Moxom, Phys. Plasmas 15, 072304 (2008).
http://dx.doi.org/10.1063/1.2956335
13.
13. C. A. Isaac, C. J. Baker, T. Mortensen, D. P. van der Werf, and M. Charlton, Phys. Rev. Lett. 107, 033201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.033201
14.
14. D. P. van der Werf, C. A. Isaac, C. J. Baker, T. Mortensen, S. J. Kerrigan, and M. Charlton, New J. Phys. 14, 075022 (2012).
http://dx.doi.org/10.1088/1367-2630/14/7/075022
15.
15. L. V. Jørgensen, M. Amoretti, G. Bonomi, P. D. Bowe, C. Canali, C. Carraro, C. L. Cesar, M. Charlton, M. Doser, A. Fontana, M. C. Fujiwara, R. Funakoshi, P. Genova, J. S. Hangst, R. S. Hayano, A. Kellerbauer, V. Lagomarsino, R. Landua, E. Lodi Rizzini, M. Macrí, N. Madsen, D. Mitchard, P. Montagna, A. Rotondi, G. Testera, A. Variola, L. Venturelli, D. P. van der Werf, and Y. Yamazaki (ATHENA Collaboration), Phys. Rev. Lett. 95, 025002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.025002
16.
16. R. Funakoshi, M. Amoretti, G. Bonomi, P. D. Bowe, C. Canali, C. Carraro, C. L. Cesar, M. Charlton, M. Doser, A. Fontana, M. C. Fujiwara, P. Genova, J. S. Hangst, R. S. Hayano, L. V. Jørgensen, A. Kellerbauer, V. Lagomarsino, R. Landua, E. Lodi Rizzini, M. Macrí, N. Madsen, G. Manuzio, D. Mitchard, P. Montagna, L. G. C. Posada, A. Rotondi, G. Testera, A. Variola, L. Venturelli, D. P. van der Werf, Y. Yamazaki, and N. Zurlo (ATHENA Collaboration), Phys. Rev. A 76, 012713 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.012713
17.
17. G. B. Andresen, W. Bertsche, P. D. Bowe, C. C. Bray, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, J. Fajans, M. C. Fujiwara, R. Funakoshi, D. R. Gill, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, R. Hydomako, M. J. Jenkins, L. V. Jørgensen, L. Kurchaninov, R. Lambo, N. Madsen, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D. M. Silveira, J. W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, and Y. Yamazaki (ALPHA Collaboration), Phys. Rev. Lett. 100, 203401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.203401
18.
18. G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, R. Hydomako, M. J. Jenkins, S. Jonsell, L. V. Jørgensen, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, S. Seif El Nasr, D. M. Silveira, C. So, J. W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, and Y. Yamazaki (ALPHA Collaboration), Nature 468, 673 (2010).
http://dx.doi.org/10.1038/nature09610
19.
19. G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, C. L. Cesar, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, A. J. Humphries, R. Hydomako, S. Jonsell, S. L. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, D. M. Silveira, C. So, J. W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, and Y. Yamazaki (ALPHA Collaboration), Nat. Phys. 7, 558 (2011).
http://dx.doi.org/10.1038/nphys2025
20.
20. Y. Enomoto, N. Kuroda, K. Michishio, C. H. Kim, H. Higaki, Y. Nagata, Y. Kanai, H. A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao, Y. Nagashima, Y. Matsuda, B. Juhász, A. Mohri, and Y. Yamazaki, Phys. Rev. Lett. 105, 243401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.243401
21.
21. C. Amole, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, A. Capra, C. L. Cesar, M. Charlton, A. Deller, P. H. Donnan, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, C. A. Isaac, S. Jonsell, L. Kurchaninov, A. Little, N. Madsen, J. T. K. McKenna, S. Menary, S. C. Napoli, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, C. R. Shields, D. M. Silveira, S. Stracka, C. So, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele (ALPHA Collaboration), Nature 483, 439 (2012).
http://dx.doi.org/10.1038/nature10942
22.
22. N. Kuroda, H. A. Torii, M. Shibata, Y. Nagata, D. Barna, M. Hori, D. Horváth, A. Mohri, J. Eades, K. Komaki, and Y. Yamazaki, Phys. Rev. Lett. 100, 203402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.203402
23.
23. H. Knudsen, H. A. Torii, M. Charlton, Y. Enomoto, I. Georgescu, C. A. Hunniford, C. H. Kim, Y. Kanai, H. -P. E. Kristiansen, N. Kuroda, M. D. Lund, R. W. McCullough, K. Tökesi, U. I. Uggerhøj, and Y. Yamazaki, Phys. Rev. Lett. 105, 213201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.213201
24.
24. D. B. Cassidy and A. P. Mills, Jr., Nature 449, 195 (2007).
http://dx.doi.org/10.1038/nature06094
25.
25. D. B. Cassidy, V. E. Meligne, and A. P. Mills, Jr., Phys. Rev. Lett. 104, 173401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.173401
26.
26. C. M. Surko, J. R. Danielson, and T. R. Weber, “ Accumulation, storage and manipulation of large numbers of positrons in traps II—Selected topics,” in Physics with Many Positrons, Proc. Int. School of Physics Enrico Fermi, Course CLXXIV, edited by A. Dupasquier, A. P. Mills, Jr., and R. Brusa (IOS Press, Amsterdam, 2010), p. 545.
27.
27. J. Xu, M. H. Weber, and K. G. Lynn, “ The simulation of moderated positrons behaviour in a micro-trap with long aspect ratio,” in Physics with Many Positrons, Proc. Int. School of Physics Enrico Fermi, Course CLXXIV, edited by A. Dupasquier, A. P. Mills, Jr., and R. Brusa (IOS Press, Amsterdam, 2010), p. 575.
28.
28. T. J. Murphy and C. M. Surko, Phys. Rev. A 46, 5696 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.5696
29.
29. J. Clarke, D. P. van der Werf, B. Griffiths, D. C. S. Beddows, M. Charlton, H. H. Telle, and P. R. Watkeys, Rev. Sci. Instrum. 77, 063302 (2006).
http://dx.doi.org/10.1063/1.2206561
30.
30. R. C. Davidson, Physics of Nonneutral Plasmas (Imperial College Press, London, 2002).
31.
31. K. S. Fine and C. F. Driscoll, Phys. Plasmas 5, 601 (1998).
http://dx.doi.org/10.1063/1.872752
32.
32. J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4444
33.
33. S. Kim, M. C. Choi, S. Kim, M. Hur, H. S. Kim, J. S. Yoo, G. T. Blakney, C. L. Hendrickson, and A. G. Marshall, Anal. Chem. 79, 3575 (2007).
http://dx.doi.org/10.1021/ac062016z
34.
34. S. A. Hofstadler, K. A. Sannes-Lowery, and R. H. Griffey, Rapid Commun. Mass Spectrom. 15, 945 (2001).
http://dx.doi.org/10.1002/rcm.312
35.
35. J. Notte, J. Fajans, R. Chu, and J. S. Wurtele, Phys. Rev. Lett. 70, 3900 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3900
36.
36. D. L. Eggleston, C. F. Driscoll, B. R. Beck, A. W. Hyatt, and J. H. Malmberg, Phys. Fluids B 4, 3432 (1992).
http://dx.doi.org/10.1063/1.860399
37.
37. E. Sarid, E. Gilson, and J. Fajans, AIP Conf. Proc. 606, 422 (2002).
http://dx.doi.org/10.1063/1.1454313
38.
38. Z. Ouyang, Z. Takáts, T. A. Blake, B. Gologan, A. J. Guymon, J. M. Wiseman, J. C. Oliver, V. J. Davisson, and R. G. Cooks, Science 301, 1351 (2003).
http://dx.doi.org/10.1126/science.1088776
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/1/10.1063/1.4789880
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic radial cross section of the RW electrode showing the bias voltages applied to opposing segments. The black solid line is the path of the positron cloud (grey disk) during the experiment (see text). The green broken line represents the cloud orbit during application of the bias voltages. The red dotted line follows the orbit after the bias voltages are removed. (b) Combined picture of positron clouds for a number of different positions within one magnetron orbit after a bias voltage of 0.36 V was switched on for 7 μs. The dashed line is a fit of a circle to the magnetron orbit with the cross denoting the centre of the trap. Asymmetries in the transport fields are the likely cause of the slight offsets of the clouds from the fitted orbit.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of part of the accumulator second stage with a segmented electrode and the MCP-phosphor screen system used to measure the radial position of the ejected positron cloud. The axial magnetic field, B, is provided by an external solenoid. Phosphor screen images were recorded by an external CCD camera.

Image of FIG. 3.

Click to view

FIG. 3.

Measured x-position versus time after pulsed excitation (see text). The cloud was initially moved by applying a bias voltage of ±0.14 V to the appropriate electrodes for 15 μs. The solid line is a sinusoidal fit to the data.

Image of FIG. 4.

Click to view

FIG. 4.

Displacement, dM , as a function of the time following application of the bias voltage at t = 0. The solid line is fitted using Eq. (7) giving  mm and .

Image of FIG. 5.

Click to view

FIG. 5.

Peak displacement of the cloud as measured at the MCP as a function of the applied bias voltage. The solid line is a linear fit to the data points with a gradient of  mm V−1.

Loading

Article metrics loading...

/content/aip/journal/pop/20/1/10.1063/1.4789880
2013-01-31
2014-04-16

Abstract

We describe a simple and versatile method to manipulate the amplitude of the magnetron orbit of ions stored in a Penning trap, applied here to a cloud of low energy positrons. By applying a pulsed voltage to a split electrode in the trap, which is normally used for rotating wall compression of the particles, the size of the magnetron orbit can be changed at will. The modified orbit has been shown to be stable for many magnetron periods. The technique could find use in applications which require off-axis ejection of particles, for instance in the filling of arrays of traps for multicell positron storage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/1/1.4789880.html;jsessionid=5ro1p41u0rdg7.x-aip-live-03?itemId=/content/aip/journal/pop/20/1/10.1063/1.4789880&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Manipulation of the magnetron orbit of a positron cloud in a Penning trap
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/1/10.1063/1.4789880
10.1063/1.4789880
SEARCH_EXPAND_ITEM