1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Multi-dipolar microwave plasmas and their application to negative ion production
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/10/10.1063/1.4823466
1.
1. A. Lacoste, T. Lagarde, S. Bechu, Y. Arnal, and J. Pelletier, Plasma Sources Sci. Technol. 11, 407 (2002).
http://dx.doi.org/10.1088/0963-0252/11/4/307
2.
2. D. Daineka, D. Kouznetsov, P. Bulkin, G. Girard, J. E. Bourée, and B. Drévillon, Eur. Phys. J.: Appl. Phys. 28, 343 (2004).
http://dx.doi.org/10.1051/epjap:2004198
3.
3. D. D. Daineka, P. Bulkin, G. Girard, J. E. Bourée, and B. Drévillon, Eur. Phys. J.: Appl. Phys. 26, 3 (2004).
http://dx.doi.org/10.1051/epjap:2004013
4.
4. M. Kihel, R. Clergeraux, S. Sahli, D. Escaich, Y. Segui, and P. Raynaud, Mater. Sci. Forum 609, 49 (2009).
http://dx.doi.org/10.4028/www.scientific.net/MSF.609.49
5.
5. H. Le-Quoc, A. Lacoste, S. Béchu, A. Bès, D. Bourgault, and D. Fruchart, J. Alloys Compd. 538, 73 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.06.003
6.
6. G. Girard, S. Béchu, N. Caillault, L. Carbone, L. Ortega, and D. Fruchart, J. Alloys Compd. 465, 35 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.11.087
7.
7. A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, C. R. Phys. 14, 169 (2013).
http://dx.doi.org/10.1016/j.crhy.2012.10.008
8.
8. M. Bacal, J. A. A. Ivanov, C. Rouille, P. Svarnas, S. Bechu, and J. Pelletier, AIP Conf. Proc. 763, 203 (2005).
http://dx.doi.org/10.1063/1.1908296
9.
9. R. Burke and J. Pelletier, “Discharges confined by multipolar magnetic fields,” in Microwave Excited Plasmas, edited by M. Moisan and J. Pelletier (Elsevier, Amsterdam/London/New York/Tokyo, 1992), pp. 273301.
10.
10. T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, Plasma Sources Sci. Technol. 10, 181 (2001).
http://dx.doi.org/10.1088/0963-0252/10/2/308
11.
11. D. S. Walton, J. Phys. B: At. Mol. Opt. Phys. 4, 1343 (1971).
http://dx.doi.org/10.1088/0022-3700/4/10/019
12.
12. P. Svarnas, M. Bacal, P. Auvray, S. Bechu, and J. Pelletier, Rev. Sci. Instrum. 77, 03A5123 (2006).
http://dx.doi.org/10.1063/1.2165270
13.
13. M. Bacal, J. A. A. Ivanov, C. Rouille, P. Svarnas, S. Bechu, and J. Pelletier, AIP Conf. Proc. 763, 203 (2005).
http://dx.doi.org/10.1063/1.1908296
14.
14. L. Latrasse, A. Lacoste, J. Sirou, and J. Pelletier, Plasma Sources Sci. Technol. 16, 7 (2007).
http://dx.doi.org/10.1088/0963-0252/16/1/002
15.
15. A. Aanesland, J. Bredin, P. Chabert, and V. Godyak, Appl. Phys. Lett. 100, 044102 (2012).
http://dx.doi.org/10.1063/1.3680088
16.
16. P. McNeely, S. V. Dudin, S. Christ-Koch, U. Fantz, and NNBI Team, Plasma Sources Sci. Technol. 18, 014011 (2009).
http://dx.doi.org/10.1088/0963-0252/18/1/014011
17.
17. S. Christ-Koch, U. Fantz, M. Berger, and NNBI Team, Plasma Sources Sci. Technol. 18, 025003 (2009).
http://dx.doi.org/10.1088/0963-0252/18/2/025003
18.
18. M. J. Druyvesteyn, Z. Phys. 64, 781 (1930).
http://dx.doi.org/10.1007/BF01773007
19.
19. W. H. Press and S. A. Teukolsky, Comput. Phys. 4, 669 (1990).
20.
20. I. D. Sudit and R. C. Woods, Rev. Sci. Instrum. 64, 2440 (1993).
http://dx.doi.org/10.1063/1.1143902
21.
21. V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 233001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/23/233001
22.
22. A. A. Ivanov, Jr., C. Rouille, M. Bacal, Y. Arnal, S. Bechu, and J. Pelletier, Rev. Sci. Instrum. 75, 1750 (2004).
http://dx.doi.org/10.1063/1.1695619
23.
23. P. Svarnas, J. Breton, M. Bacal, and R. Faulkner, IEEE Trans. Plasma Sci. 35, 1156 (2007).
http://dx.doi.org/10.1109/TPS.2007.902122
24.
24. P. Svarnas, B. M. Annaratone, S. Bechu, J. Pelletier, and M. Bacal, Plasma Sources Sci. Technol. 18, 045010 (2009).
http://dx.doi.org/10.1088/0963-0252/18/4/045010
25.
25. M. Bacal, Rev. Sci. Instrum. 71, 3981 (2000).
http://dx.doi.org/10.1063/1.1310362
26.
26. C. Courteille, A. M. Bruneteau, and M. Bacal, Rev. Sci. Instrum. 66, 2533 (1995).
http://dx.doi.org/10.1063/1.1145654
27.
27. P. Svarnas, J. Breton, M. Bacal, and T. Mosbach, Rev. Sci. Instrum. 77, 03A532 (2006).
http://dx.doi.org/10.1063/1.2172343
28.
28. B. Jackson and D. Lemoine, J. Chem. Phys. 114, 474 (2001).
http://dx.doi.org/10.1063/1.1328041
29.
29. J. N. Bardsley and J. M. Wadehra, Phys. Rev. A 20, 1398 (1979).
http://dx.doi.org/10.1103/PhysRevA.20.1398
30.
30. M. Bacal, A. M. Bruneteau, and M. Nachman, J. Appl. Phys. 55, 15 (1984).
http://dx.doi.org/10.1063/1.332880
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/10/10.1063/1.4823466
Loading
/content/aip/journal/pop/20/10/10.1063/1.4823466
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/10/10.1063/1.4823466
2013-10-04
2014-09-20

Abstract

During the past decade multi-dipolar plasmas have been employed for various purposes such as surface treatments in biomedicine, physical and chemical vapour deposition for hydrogen storage, and applications in mechanical engineering. On the other hand, due to the design and operational mode of these plasma sources (i.e., strong permanent magnets for the electron cyclotron resonance coupling, low working pressure, and high electron density achieved) they are suitable for studying fundamental mechanisms involved in negative ion sources used in magnetically confined fusion and particle accelerators. Thus, this study presents an overview of fundamental results obtained with: (i) a single dipolar source, (ii) a network of seven dipolar plasma sources inserted into a magnetic multipolar chamber (Camembert III), and (iii) four dipolar sources housed in a smaller metallic cylinder (ROSAE III). Investigations with Langmuir probes of electron energy probability functions revealed the variation of the plasma properties versus the radial distance from the axis of a dipolar source in its mid plane and allowed the determination of the proportion between hot and cold electron populations in both chambers. These results are compared with the density of hydrogen negative ions, measured using the photodetachment technique. Electron energy probability functions obtained in these different configurations show the possibility of both hot and cold electron production. The former is a prerequisite for increasing the vibrational level of molecules and the dissociation degree and the latter for producing negative ions via dissociative attachment of the cold electrons or via surface production induced by H atoms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/10/1.4823466.html;jsessionid=5f4q1pb0a6nef.x-aip-live-06?itemId=/content/aip/journal/pop/20/10/10.1063/1.4823466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Multi-dipolar microwave plasmas and their application to negative ion production
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/10/10.1063/1.4823466
10.1063/1.4823466
SEARCH_EXPAND_ITEM