1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/10/10.1063/1.4826956
1.
1. H. Soltwisch, Rev. Sci. Instrum. 57, 1939 (1986).
http://dx.doi.org/10.1063/1.1138803
2.
2. D. L. Brower, W. X. Ding, S. D. Terry, J. K. Anderson, T. M. Biewer, B. E. Chapman, D. Craig, C. B. Forest, S. C. Prager, and J. S. Sarff, Phys. Rev. Lett. 88, 185005 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.185005
3.
3. W. X. Ding, D. L. Brower, S. D. Terry, D. Craig, S. C. Prager, J. S. Sarff, and J. C. Wright, Phys. Rev. Lett. 90, 035002 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.035002
4.
4. Marco Riva, L. Zabeo, E. Joffrin, D. Mazon, D. Moreau, A. Murari, R. Felton, K. Guenther, X. Litaudon, F. Sartori, C. Taliercio, and G. Tresset, Fusion Eng. Des. 66–68, 779 (2003).
http://dx.doi.org/10.1016/S0920-3796(03)00310-7
5.
5. M. A. Van Zeeland, R. L. Boivin, T. N. Carlstrom, and T. M. Deterly, Rev. Sci. Instrum. 79, 10E719 (2008).
http://dx.doi.org/10.1063/1.2955859
6.
6. W. F. Bergerson, P. Xu, J. H. Irby, D. L. Brower, W. X. Ding, and E. S. Marmar, Rev. Sci. Instrum. 83, 10E316 (2012).
http://dx.doi.org/10.1063/1.4731757
7.
7. Ch. Fuchs and H. J. Hartfuss, Phys. Rev. Lett. 81, 1626 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1626
8.
8. T. Akiyama, K. Kawahata, Y. Ito, S. Okajima, K. Nakayama, S. Okamura, K. Matsuoka, M. Isobe, S. Nishimura, C. Suzuki, Y. Yoshimura, K. Nagaoka, and C. Takahashi, Rev. Sci. Instrum. 77, 10F118 (2006).
http://dx.doi.org/10.1063/1.2229275
9.
9. A. Boboc, L. Zabeo, and A. Murari, Rev. Sci. Instrum. 77, 10F324 (2006).
http://dx.doi.org/10.1063/1.2229169
10.
10. L. Huang and R. V. Shcherbakov, Mon. Not. R. Astron. Soc. 416, 2574 (2011).
http://dx.doi.org/10.1111/j.1365-2966.2011.19207.x
11.
11. S. E. Segre, Plasma Phys. Controlled Fusion 41, R57 (1999).
http://dx.doi.org/10.1088/0741-3335/41/2/001
12.
12. F. P. Orsitto, A. Boboc, P. Gaudio, M. Gelfusa, E. Giovannozzi, C. Mazzotta, A. Murari, and JET EFDA Contributors, Plasma Phys. Controlled Fusion 53, 035001 (2011).
http://dx.doi.org/10.1088/0741-3335/53/3/035001
13.
13. K. Guenther and JET-EFDA Contributors, Plasma Phys. Controlled Fusion 46, 1423 (2004).
http://dx.doi.org/10.1088/0741-3335/46/9/006
14.
14. M. Ono, S. M. Kaye, Y. -K. M. Peng, G. Barnes, W. Blanchard, M. D. Carter, J. Chrzanowski, L. Dudek, R. Ewig, D. Gates, R. E. Hatcher, T. Jarboe, S. C. Jardin, D. Johnson, R. Kaita, M. Kalish, C. E. Kessel, H. W. Kugel, R. Maingi, R. Majeski, J. Manickam, B. McCormack, J. Menard, D. Mueller, B. A. Nelson, B. E. Nelson, C. Neumeyer, G. Oliaro, F. Paoletti, R. Parsells, E. Perry, N. Pomphrey, S. Ramakrishnan, R. Raman, G. Rewoldt, J. Robinson, A. L. Roquemore, P. Ryan, S. Sabbagh, D. Swain, E. J. Synakowski, M. Viola, M. Williams, J. R. Wilson, and NSTX Team, Nucl. Fusion 40, 557 (2000).
http://dx.doi.org/10.1088/0029-5515/40/3Y/316
15.
15. J. E. Menard, S. Gerhardt, M. Bell, J. Bialek, A. Brooks, J. Canik, J. Chrzanowski, M. Denault, L. Dudek, D. A. Gates, N. Gorelenkov, W. Guttenfelder, R. Hatcher, J. Hosea, R. Kaita, S. Kaye, C. Kessel, E. Kolemen, H. Kugel, R. Maingi, M. Mardenfeld, D. Mueller, B. Nelson, C. Neumeyer, M. Ono, E. Perry, R. Ramakrishnan, R. Raman, Y. Ren, S. Sabbagh, M. Smith, V. Soukhanovskii, T. Stevenson, R. Strykowsky, D. Stutman, G. Taylor, P. Titus, K. Tresemer, K. Tritz, M. Viola, M. Williams, R. Woolley, H. Yuh, H. Zhang, Y. Zhai, A. Zolfaghari, and the NSTX Team, Nucl. Fusion 52, 083015 (2012).
http://dx.doi.org/10.1088/0029-5515/52/8/083015
16.
16. J. Zhang, W. A. Peebles, T. A. Carter, N. A. Crocker, E. J. Doyle, S. Kubota, X. Nguyen, T. L. Rhodes, C. Wannberg, and L. Zeng, Rev. Sci. Instrum. 83, 10E321 (2012).
http://dx.doi.org/10.1063/1.4733735
17.
17. S. E. Segre and V. Zanza, Phys. Plasmas 9, 2919 (2002).
http://dx.doi.org/10.1063/1.1485075
18.
18. R. Imazawa, Y. Kawano, and Y. Kusama, Plasma Phys. Controlled Fusion 54, 055005 (2012).
http://dx.doi.org/10.1088/0741-3335/54/5/055005
19.
19. J. Zhang, N. A. Crocker, T. A. Carter, S. Kubota, and W. A. Peebles, Rev. Sci. Instrum. 81, 10D519 (2010).
http://dx.doi.org/10.1063/1.3479042
20.
20. F. P. Orsitto, A. Boboc, P. Gaudio, M. Gelfusa, E. Giovannozzi, C. Mazzotta, and A. Murari, Rev. Sci. Instrum. 81, 10D533 (2010).
http://dx.doi.org/10.1063/1.3502039
21.
21. M. A. Van Zeeland, R. L. Boivin, T. N. Carlstrom, T. Deterly, and D. K. Finkenthal, Rev. Sci. Instrum. 77, 10F325 (2006).
http://dx.doi.org/10.1063/1.2336437
22.
22. T. N. Carlstrom, G. L. Campbell, J. C. DeBoo, R. Evanko, J. Evans, C. M. Greenfield, J. Haskovec, C. L. Hsieh, E. McKee, R. T. Snider, R. Stockdale, P. K. Trost, and M. P. Thomas, Rev. Sci. Instrum. 63, 4901 (1992).
http://dx.doi.org/10.1063/1.1143545
23.
23. L. L. Lao, H. St John, R. D. Stambaugh, A. G. Kellman, and W. Pfeiffer, Nucl. Fusion 25, 1611 (1985).
http://dx.doi.org/10.1088/0029-5515/25/11/007
24.
24. Max Born, Emil Wolf, and A. B. Bhatia, Principles of Optics (CUP Archive, 2000).
25.
25. R. Cano, I. Fidone, and M. J. Schwartz, Phys. Rev. Lett. 27, 783 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.783
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/10/10.1063/1.4826956
Loading
/content/aip/journal/pop/20/10/10.1063/1.4826956
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/10/10.1063/1.4826956
2013-10-31
2014-07-29

Abstract

Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough  T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the resultant experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/10/1.4826956.html;jsessionid=2mh5wnkju7dqg.x-aip-live-02?itemId=/content/aip/journal/pop/20/10/10.1063/1.4826956&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/10/10.1063/1.4826956
10.1063/1.4826956
SEARCH_EXPAND_ITEM