1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ion finite Larmor radius effects on the interchange instability in an open system
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pop/20/11/10.1063/1.4829682
1.
1. I. Katanuma, Y. Okuyama, and S. Kato, Nucl. Fusion 53, 043002 (2013).
http://dx.doi.org/10.1088/0029-5515/53/4/043002
2.
2. I. Katanuma, S. Sato, and Y. Okuyama, in 24th IAEA Fusion Energy Conference, San Diego, 2012, IAEA CN-197.
3.
3. R. D. Hazeltine and J. D. Meiss, Plasma Confinement (Dover Publications, Inc., Mineola, New York, 2003).
4.
4. M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl. Fusion Suppl. Part 1, 143 (1962).
5.
5. K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.197
6.
6. N. M. Ferraro and S. C. Jardin, Phys. Plasmas 13, 092101 (2006).
http://dx.doi.org/10.1063/1.2236277
7.
7. P. Zhu, D. D. Schnack, F. Ebrahimi, E. G. Zweibel, M. Suzuki, C. C. Hegna, and C. R. Sovinec, Phys. Rev. Lett. 101, 085005 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.085005
8.
8. B. I. Cohen, R. P. Freis, and W. A. Newcomb, Phys. Fluids 29, 1558 (1986).
http://dx.doi.org/10.1063/1.865673
9.
9. B. Lane, R. S. Post, and J. Kesner, Nucl. Fusion 27, 277 (1987).
http://dx.doi.org/10.1088/0029-5515/27/2/008
10.
10. M. W. Phillips and J. D. Callen, Phys. Fluids 27, 1733 (1984).
http://dx.doi.org/10.1063/1.864829
11.
11. V. P. Pastukhov and A. Yu. Sokolov, Fiz. Plasmy 17, 1043 (1991);
11. V. P. Pastukhov and A. Yu. Sokolov, Sov. J. Plasma Phys. 17, 603 (1991).
12.
12. Y. Sasagawa, I. Katanuma, Y. Mizoguchi, T. Cho, and V. P. Pastukhov, Phys. Plasmas 13, 122506 (2006).
http://dx.doi.org/10.1063/1.2402912
13.
13. S. I. Braginskii, in Reviews of Plasma Physics, edited by A. M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1.
14.
14. M. N. Rosenbluth and A. Simon, Phys. Fluids 8, 1300 (1965).
http://dx.doi.org/10.1063/1.1761402
15.
15. J. M. Dawson, in Methods in Computational Physics, edited by B. Alder (Academic Press, New York, 1970), Vol. 9.
16.
16. J. M. Dawson, H. Okuda, and B. Rosen, in Methods in Computational Physics, edited by B. Alder (Academic Press, New York, 1976), Vol. 16.
17.
17. H. Goede, D. G. Humanic, and J. M. Dawson, Phys. Fluids 26, 1812 (1983).
http://dx.doi.org/10.1063/1.864357
18.
18. P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 118, 146, doi:10.1029/2012JA018143 (2013).
http://dx.doi.org/10.1029/2012JA018143
19.
19. P. L. Pritchett, in Space Plasma Simulation, edited by J. Büchner, C. T. Dum, and M. Scholer (Springer, New York, 2012).
20.
20. B. I. Cohen, A. B. Langdon, and A. Friedman, J. Comput. Phys. 46, 15 (1982).
http://dx.doi.org/10.1016/0021-9991(82)90002-X
21.
21. B. I. Cohen, A. B. Langdon, and A. Friedman, J. Comput. Phys. 56, 51 (1984).
http://dx.doi.org/10.1016/0021-9991(84)90083-4
22.
22. A. B. Langdon, B. I. Cohen, and A. Friedman, J. Comput. Phys. 51, 107 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90083-9
23.
23. T. H. Watanabe, Y. Todo, R. Horiuchi, K. Watanabe, and T. Sato, J. Comput. Phys. 127, 473 (1996).
http://dx.doi.org/10.1006/jcph.1996.0188
24.
24. D. C. Barnes, T. Kamimura, J.-N. Leboeuf, and T. Tajima, J. Comput. Phys. 52, 480 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90004-9
25.
25.For example, K. Miyamoto, Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1979).
26.
26. J. J. Ramos, Phys. Plasmas 12, 112301 (2005).
http://dx.doi.org/10.1063/1.2114747
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/11/10.1063/1.4829682
Loading
/content/aip/journal/pop/20/11/10.1063/1.4829682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pop/20/11/10.1063/1.4829682
2013-11-14
2014-08-22

Abstract

A particle simulation of an interchange instability was performed by taking into account the ion finite Larmor radius (FLR) effects. It is found that the interchange instability with large FLR grows in two phases, that is, linearly growing phase and the nonlinear phase subsequent to the linear phase, where the instability grows exponentially in both phases. The linear growth rates observed in the simulation agree well with the theoretical calculation. The effects of FLR are usually taken in the fluid simulation through the gyroviscosity, the effects of which are verified in the particle simulation with large FLR regime. The gyroviscous cancellation phenomenon observed in the particle simulation causes the drifts in the direction of ion diamagnetic drifts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pop/20/11/1.4829682.html;jsessionid=2dss6xkfxvgim.x-aip-live-03?itemId=/content/aip/journal/pop/20/11/10.1063/1.4829682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pop
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ion finite Larmor radius effects on the interchange instability in an open system
http://aip.metastore.ingenta.com/content/aip/journal/pop/20/11/10.1063/1.4829682
10.1063/1.4829682
SEARCH_EXPAND_ITEM