Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Stevens, S. Von Goeler, S. Bernabei, M. Bitter, T. K. Chu, P. Efthimion, N. Fisch, W. Hooke, J. Hosea, F. Jobes, C. Karney, E. Meservey, R. Motley, and G. Taylor, “ Modeling of the electron distribution based on Bremsstrahlung emission during lower-hybrid current drive on PLT,” Nucl. Fusion 25, 1529 (1985).
2. G. T. Hoang, W. Horton, C. Bourdelle, B. Hu, X. Garbet, and M. Ottaviani, “ Analysis of the critical electron temperature gradient in Tore Supra,” Phys. Plasmas 10, 405412 (2003).
3. G. T. Hoang, C. Bourdelle, X. Garbet, J. F. Artaud, V. Basiuk, J. Bucalossi, F. Lairet, C. Fenzi-Bonizec, C. Gil, J. L. Ségui, J. M. Travere, E. Tsitrone, and L. Vermare, “ Parametric dependence of turbulent particle transport in tore supra plasmas,” Phys. Rev. Lett. 93(13), 135003 (2004).
4. D. van Houtte, G. Martin, A. Bécoulet, J. Bucalossi, G. Giruzzi, G. T. Hoang, Th. Loarer, and B. Saoutic (on behalf of the Tore Supra Team), “ Recent fully non-inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges,” Nucl. Fusion 44, L11 (2004).
5. A. Bécoulet, G. T. Hoang, J. F. Artaud, Y. S. Bae, J. Belo, G. Berger-By, J. M. Bernard, Ph. Cara, A. Cardinali, C. Castaldo, S. Ceccuzzi, R. Cesario, M. H. Cho, J. Decker, L. Delpech, H. J. Do, A. Ekedahl, J. Garcia, P. Garibaldi, M. Goniche, D. Guilhem, C. Hamlyn-Harris, J. Hillairet, Q. Y. Huang, F. Imbeaux, H. Jia, F. Kazarian, S. H. Kim, Y. Lausenaz, X. Litaudon, R. Maggiora, R. Magne, L. Marfisi, S. Meschino, D. Milanesio, F. Mirizzi, P. Mollard, W. Namkung, L. Pajewski, L. Panaccione, S. Park, H. Park, Y. Peysson, A. Saille, F. Samaille, G. Schettini, M. Schneider, P. Sharma, A. Tuccillo, O. Tudisco, G. Vecchi, R. Villari, K. Vulliez, Y. Wu, H. L. Yang, and Q. Zeng, “ Steady-state long-pulse operation using lower hybrid current drive,” Fusion Eng. Des. 86, 490498 (2011).
6. G. T. Hoang, A. Bocoulet, and J. Jacquinot et al., “ A lower hybrid current drive system for ITER,” Nucl. Fusion 49, 075001 (2009).
7. D. Summers, R. M. Thorne, and F. Xiao, “ Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere,” J. Geophys. Res. 103(A9), 2048720500, doi:10.1029/98JA01740 (1998).
8. R. L. Stenzel, “ High frequency instability of a magnetized spherical electron sheath,” Phys. Plasmas 17, 062109 (2010).
9. C. Crabtree, L. Rudakov, G. Ganguli, and M. Mithaiwala, “ Collisionless and collisional dissipation of magnetospherically reflecting whistler waves,” Geophys. Res. Lett. 39, 28, doi:10.1029/2012GL052921 (2012).
10. Y. Peysson, J. Decker, L. Morini, and S. Coda, “ RF current drive and plasma fluctuations,” Plasma Phys. Controlled Fusion 53, 124028 (2011).
11. Y. Peysson and J. Decker, “ Advanced lower hybrid current drive modeling,” AIP Conf. Proc. 933, 293296 (2007).
12. J. Decker, Y. Peysson, J. Hillairet, J.-F. Artaud, V. Basiuk, A. Bécoulet, A. Ekedahl, M. Goniche, G. T. Hoang, F. Imbeaux, A. K. Ram, and M. Schneider, “ Calculations of lower hybrid current drive in ITER,” Nucl. Fusion 51(7), 073025 (2011).
13. P. T. Bonoli and E. Ott, “ Accessibility and energy deposition of lower-hybrid waves in a tokamak with density fluctuations,” Phys. Rev. Lett. 46, 424427 (1981).
14. N. Bertelli, G. Wallace, P. T. Bonoli, R. W. Harvey, A. P. Smirnov, S. G. Baek, R. R. Parker, C. K. Phillips, E. J. Valeo, J. R. Wilson, and J. C. Wright et al., “ The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation,” Plasma Phys. Controlled Fusion 55, 074003 (2013).
15. A. Ekedahl, M. Goniche, D. Guilhem, F. Kazarian, Y. Peysson, and Tore Supra Team, Fusion Sci. Technol. 56, 1150 (2009).
16. A. Ekedahl, L. Delpech, M. Goniche, D. Guilhem, J. Hillairet, M. Preynas, P. K. Sharmaa, J. Achard, Y. S. Bae, X. Bai, C. Balorin, Y. Baranov, V. Basiuk, A. Bécoulet, J. Belo, G. Berger-By, S. Bremond, C. Castaldo, S. Ceccuzzi, R. Cesario, E. Corbel, X. Courtois, J. Decker, E. Delmasb, X. Ding, D. Douai, C. Goletto, J. P. Gunn, P. Hertout, G. T. Hoang, F. Imbeaux, K. K. Kirov, X. Litaudon, R. Magne, J. Mailloux, D. Mazon, F. Mirizzi, P. Mollard, P. Moreau, T. Oosako, V. Petrzilka, Y. Peysson, S. Poli, M. Prou, F. Saint-Laurent, F. Samaille, and B. Saoutic, “ Validation of the ITER-relevant passive-active-multijunction LHCD launcher on long pulses in Tore Supra,” Nucl. Fusion 50, 112002 (2010).
17. S. Berio, “ Development de coupler a la frequency hybride pour la generation of noninductive du courant dans un tokamak,” thesis (AMU, 1996).
18. P. Bibet, F. Mirizzi, P. Bosia, L. Doceul, S. Kuzikov, K. Rantamäki, A. A. Tuccillo, and F. Wasasterjna, “ Overview of the ITER-FEAT LH system,” Fusion Eng. Des. 66–68, 525529 (2003).
19. J. Hillairet, D. Voyer, A. Ekedahl, M. Goniche, M. Kazda, O. Meneghini, D. Milanesio, and M. Preynas, “ ALOHA: An Advanced Lower Hybrid Antenna coupling code,” Nucl. Fusion 50, 125010 (2010).
20. N. Fisch and A. H. Boozer, “ Creating an asymmetric plasma resistivity with waves,” Phys. Rev. Lett. 45, 720722 (1980).
21. J. M. Rax and D. Moreau, “ Nonlocal wave response in current driven tokamaks,” Nucl. Fusion 29, 1751 (1989).
22. C. C. Klepper, R. C. Isler, J. Hillairet, E. H. Martin, L. Colas, A. Ekedahl, M. Goniche, J. H. Harris, D. L. Hillis, S. Panayotis, B. Pegourié, Ph. Lotte, G. Colledani, V. Martin, and Tore Supra Lower Hybrid Systems Technical Team, “Dynamic stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna,” Phys. Rev. Lett. 110, 215005 (2013).
23. I. V. Kuzichev, “ On whistler mode wave scattering from density irregularities in the upper ionosphere,” J. Geophys. Res. 117, A06325, doi:10.1029/2011JA017130 (2012).
24. P. L. Colestock, “ Asymptotic solutions of the lower-hybrid wave propagation in two-dimensional inhomogeneous plasma,” Nucl. Fusion 18(5), 740 (1978).
25. K. Kupfer and D. Moreau, “ Wave chaos and the dependence of LHCD efficiency on temperature,” Nucl. Fusion 32, 1845 (1992).
26. D. Moreau and TORE SUPRA Team, Phys. Fluids B 4, 2165 (1992).
27. W. Horton and Y. Ichikawa, Chaos and Structures in Nonlinear Plasmas (World Scientific, 1996).
28. P. L. Andrews and F. W. Perkins, “ Scattering of lower-hybrid waves by drift-wave density fluctuations: Solutions of the radiative transfer equation,” Phys. Fluids 26, 2537 (1983).
29. K. Theilhaber and A. Bers, “ Coupling to the fast wave at lower hybrid frequencies,” Nucl. Fusion 20, 547 (1980).
30. D. Van Eester, E. Lerche, and A. Messiaen, in CCIC Meeting, Cadarache, January 9–11, 2013.
31. E. Nilsson, J. Decker, Y. Peysson, J.-F. Artaud, A. Ekedahl, J. Hillairet, T. Aniel, V. Basiuk, M. Goniche, F. Imbeaux, D. Mazon, and P. Sharma, “ Comparative modeling of lower-hybrid current drive with two launcher designs in the Tore Supra tokamak,” Nucl. Fusion 53, 083018 (2013).
32. J. C. Wright, P. T. Bonoli, M. Brambilla, F. Meo, E. D'Azevedo, D. B. Batchelor, E. F. Jaeger, L. A. Berry, C. K. Phillips, and A. Pletzer, “ Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks,” Phys. Plasmas 11(5), 24732479 (2004).
33. J. C. Wright, P. T. Bonoli, A. E. Schmidt, C. K. Phillips, E. J. Valeo, R. W. Harvey, and M. A. Brambilla, “ An assessment of full wave effects on the propagation and absorption of lower hybrid waves,” Phys. Plasmas 16(7), 072502 (2009).
34. W. Horton, Turbulent Transport in Magnetized Plasmas (World Scientific, 2012), Chap. 14, pp. 362369.
35. J. D. Callen, “ Effects of 3D magnetic perturbations on toroidal plasmas,” Nucl. Fusion 51, 094026 (2011).
36. R. Fitzpatrick, “ Helical temperature perturbations associated with tearing modes in tokamaks,” Phys. Plasmas 2, 825 (1995).
37. S. I. Popel and K. Elsässer, “ Magnetic field perturbations and lower-hybrid current drive,” Comments Plasma Phys. Controlled Fusion 16, 7989 (1994).
38. M. Goniche, J. F. Artaud, V. Basiuk, Y. Peysson, T. Aniel, A. Ekedahl, G. Giruzzi, F. Imbeaux, J. Mailloux, D. Mazon, W. Zwingman, and JET EFDA Contributors, “Lower hybrid current drive efficiency on Tore Supra and JET,” AIP Conf. Proc. 787, 307310 (2005).
39. G. M. Wallace et al., Phys. Plasmas 17(8), 082508 (2010).

Data & Media loading...


Article metrics loading...



Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at  = 0 azimuthal mode numbers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd